

EOR #$FF: 6502 Ponderables and Befuddlements

EOR #$FF: 6502 Ponderables and Befuddlements

David Youd

Lulu Press, Inc.
2023

Copyright © 2023 by David Youd

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License.

CC BY-SA 4.0
https://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to:
− Share: Copy and redistribute the material in any medium or format.
− Adapt: Remix, transform, and build upon the material for any purpose, even

commercially.
Under the following terms:
− Attribution: You must give appropriate credit, provide a reference to the license,

and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

− ShareAlike: If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

First Printing: 2023
ebook edition, version 1.0.1

Lulu Press, Inc.
700 Park Offices Drive, Suite 250
Research Triangle, NC 27709, US

 draw your circle big
 draw your circle wide
 draw it so that everyone can find a place inside
 open up your heart
 that's where you begin
 to draw love's circle wide enough to circle others in

"Draw Your Circle (Song)" from Circle Sam and Other Tales (2017)
 by Jack Pearson (1953–2017), wandering minstrel, friend

vii

Preface

As I write, Apple is selling an M2 Ultra processor that has 134
billion transistors. In contrast, the humble 6502, released in 1975,
has a mere 3,510. To the programmer, the 6502 offers bottom-up
simplicity, without limiting top-down expressivity. And therein lies
the appeal of 8-bit retro-computing: the hardware, firmware, and
software can be completely understood and reshaped by motivated
hobbyists -- a microcosm for creativity.
In 2014, pseudonymous author xorpd published a paperback
entitled xchg rax,rax (ISBN-13 978-1502958082) and also made it
freely available online. It is a collection of sixty-four short x86
assembly language excerpts, one per page (numbering 0x00 to
0x3f), and presented without explanation. Its assemblage of code
fragments is a masterwork in minimalism. Without guideposts, the
assembly-knowledgeable reader is left to ponder the significance of
each increasingly-befuddling snippet. Even the title "xchg rax,rax"
invites consideration (it's a well-known "synthetic instruction" for
NOP).
I have attempted in this book to show the same love for the 6502
chip. I've included sixty-four examples -- some original and some
drawn from blogs and forums.
If you, dear reader, have not yet written any 6502 machine
language code yourself, I encourage you to do so before exploring
much further. There are excellent contemporary 6502 machine
language learning resources, including the Easy 6502 interactive
tutorial (https://skilldrick.github.io/easy6502/). Or if you have a
favorite 6502-based 8-bit machine, search archive.org for one of the

viii

many 1980s machine language books tailored to your chosen
system. After some study, if you can recognize that this book's title
"EOR #$FF" is a replacement for a common instruction that is
missing in 6502 machine language, then you're probably ready for
these code-reading challenges.
For those experienced with assembly language: welcome, grab a
pencil and settle in. Since the book's ponderables are presented in
assembly, some consistent assembler syntax had to be selected. I
chose dasm (https://dasm-assembler.github.io/), a cross-platform
assembler that's been under development since 1987. If you're
going to execute any of these code examples, use your favorite
assembler and hardware/emulator. If you choose to build using
dasm, you must start your file with "PROCESSOR 6502", and pick a
starting "ORG $xxxx" address that's appropriate for your
environment. If you see a label containing "ZP", that belongs to
page zero, the first 256 bytes of memory.
I hope that amongst these pages you'll rediscover some forgotten
paths and pick up a few new tricks along the way. While I admire
xorpd's spartan x86 content, this 6502 book features a back section
with commentary on each of its 8-bit offerings. Resist looking at
these prematurely; for recreational thinking, while not simple, is
itself a simple pleasure, and in pleasure we often discover a sense of
self.

1

$00
Category: 6502

 EOR #VAL_1

 BEQ PT1

2

$01
Category: 6502

 LDA ADDR16

 BNE PT1

 DEC ADDR16+1

PT1: DEC ADDR16

3

$02
Category: 6502

 LDA ADDR_1 | LDA ADDR_1

 CMP ADDR_2 | CMP ADDR_2

 BCC PT1 | BMI PT1

 BEQ PT1 | BEQ PT1

4

$03
Category: Apple II

 LDY #$C0

PT1: LDA #$0C

 JSR PT2

 LDA $C030

 DEY

 BNE PT1

 RTS

. . .

PT2: SEC

PT3: PHA

PT4: SBC #$01

 BNE PT4

 PLA

 SBC #$01

 BNE PT3

 RTS

5

$04
Category: 6502

 EOR #$20

6

$05
Category: Atari 2600

 SEI

 CLD

 LDX #$FF

 TXS

 INX

 TXA

PT1: STA $00,X

 INX

 BNE PT1

7

$06
Category: 6502

 EOR #$FF

 SEC

 ADC #$00

8

$07
Category: 6502

PT1: CMP #$01

 ADC #$00

 JMP PT1

9

$08
Category: 6502

 ROL

 EOR #$01

 ROR

10

$09
Category: 6502

 BIT ADDR

 . . .

ADDR: RTS

11

$0A
Category: NES

 PLA

 STA $2007

 PLA

 STA $2007

 PLA

 STA $2007

 . . .

 PLA

 STA $2007

12

$0B
Category: 6502

 ASL

 ADC #$80

 ROL

 ASL

 ADC #$80

 ROL

13

$0C
Category: 6502

 LDA ADDR

 INC ADDR

 CMP ADDR

 BEQ PT1

 .BYTE $02

PT1: . . .

14

$0D
Category: 6502

 CMP #$80

 ROR

15

$0E
Category: 6502

 PHA

 LSR

 PLA

 ROR

16

$0F
Category: 6502

 NOP

 ;

 PHA

 ;

 PLA

 ;

 JMP (ADDR)

 ;

 RTS

 ;

 BRK

17

$10
Category: 6502

 LDA ADDR

 PHP

 LSR

 PLP

 BCC PT1

 ORA #$80

PT1: STA ADDR

18

$11
Category: 6502

PTA: STA ADDR

 LDX #$07

PT1: LSR ADDR

 ROL

 DEX

 BPL PT1

 RTS

PTB: PHA

 AND #$0F

 TAX

 PLA

 LSR

 LSR

 LSR

 LSR

 TAY

 LDA ADDR_1,X

 ORA ADDR_2,Y

 RTS

ADDR_1:

 .BYTE $00,$80,$40,$C0,$20,$A0,$60,$E0

 .BYTE $10,$90,$50,$D0,$30,$B0,$70,$F0

ADDR_2:

 .BYTE $00,$08,$04,$0C,$02,$0A,$06,$0E

 .BYTE $01,$09,$05,$0D,$03,$0B,$07,$0F

19

$12
Category: Atari 8-bit / Commodore 64

; $0278: ATARI 8-BIT

; $DC01: COMMODORE 64

IO_ADDR = $DC01

 LDA IO_ADDR

 LDY #0

 LDX #0

 LSR

 BCS PT1

 DEY

PT1: LSR

 BCS PT2

 INY

PT2: LSR

 BCS PT3

 DEX

PT3: LSR

 BCS PT4

 INX

PT4: RTS

20

$13
Category: 6502

ADDR_1:

 .BYTE $00,$01,$02,$03,$04,$05,$06,$07

 .BYTE $08,$09,$0A,$0B,$0C,$0D,$0E,$0F

 .BYTE $10,$11,$12,$13,$14,$15,$16,$17

 . . .

 .BYTE $F8,$F9,$FA,$FB,$FC,$FD,$FE,$FF

; LDY ADDR_1,X / LDX ADDR_1,Y

; AND ADDR_1,X / AND ADDR_1,Y

; ORA ADDR_1,X / ORA ADDR_1,Y

; EOR ADDR_1,X / EOR ADDR_1,Y

; ADC ADDR_1,X / ADC ADDR_1,Y

; SBC ADDR_1,X / SBC ADDR_1,Y

; CMP ADDR_1,X / CMP ADDR_1,Y

21

$14
Category: 6502

 ASL ADDR_1

 ROL ADDR_1+1

 ASL ADDR_1

 ROL ADDR_1+1

 ASL ADDR_1

 ROL ADDR_1+1

 LDA ADDR_1

 STA ADDR16_2

 LDA ADDR_1+1

 STA ADDR16_2+1

 ASL ADDR_1

 ROL ADDR_1+1

 ASL ADDR_1

 ROL ADDR_1+1

 CLC

 LDA ADDR_1

 ADC ADDR16_2

 STA ADDR_1

 LDA ADDR_1+1

 ADC ADDR16_2+1

 STA ADDR_1+1

22

$15
Category: 6502

 PHA

 TXA

 TSX

 PHA

 LDA $102,X

 AND #$10

 BEQ PT1

 . . .

 JMP PT2

PT1: . . .

PT2: PLA

 TAX

 PLA

 RTI

23

$16
Category: 6502

 LDA ADDR_1

 AND ADDR_2

 STA ADDR_3

 LDA ADDR_1

 ORA ADDR_2

 SEC

 SBC ADDR_3

 RTS

ADDR_1: .BYTE $87

ADDR_2: .BYTE $1A

ADDR_3: .BYTE $CF

24

$17
Category: 6502

 LDA ADDR+1,X

 PHA

 LDA ADDR,X

 PHA

 PHP

 RTI

25

$18
Category: Assembler

 IF (PT1 & $FF00) != (PT2 & $FF00)

 ECHO "ERROR: CROSSING GUARD"

 ENDIF

26

$19
Category: 6502

 JSR PT1

 TSX

 LDA $100,X

PT1: RTS

27

$1A
Category: 6502

 JSR PT1

PT1: PLA

 TAY

 PLA

28

$1B
Category: Various

 JSR PT1

 DC "SQUEAMISH OSSIFRAGE",0

 RTS

 . . .

; $FFE3: ACORN ELECTRON / BBC MODEL B

; $FDED: APPLE II

; $F6A4: ATARI 8-BIT

; $FFD2: COMMODORE 8-BIT (PET, VIC-20, C64, PLUS/4,

 C16, C116, C128, AND C65)

; $CC12: ORIC-1 (V1.0)

ROM_CALL = $FFD2

PT1: PLA

 STA ZP_ADDR16

 PLA

 STA ZP_ADDR16+1

PT2: LDY #$01

 LDA (ZP_ADDR16),Y

 INC ZP_ADDR16

 BNE PT3

 INC ZP_ADDR16+1

PT3: ORA #$00

 BEQ PT4

 JSR ROM_CALL

 JMP PT2

PT4: LDA ZP_ADDR16+1

 PHA

 LDA ZP_ADDR16

 PHA

 RTS

29

$1C
Category: 6502

 LDA PT2,X

 STA PT1+1

PT1: BNE PT1

PT2: .BYTE VAL_1, VAL_2, VAL_3 ; ...

30

$1D
Category: 6502

PT1: LDA ADDR_1

 CMP ADDR_2

 BEQ PT3

 BCS PT2

 LDX ADDR_2

 STX ADDR_1

 STA ADDR_2

 TXA

 SEC

PT2: SBC ADDR_2

 STA ADDR_1

 BCS PT1

PT3: RTS

31

$1E
Category: 6502

 SED

 CMP #$0A

 ADC #$30

 CLD

32

$1F
Category: Oric-1

PT1: LDA $C000

 ROR

PT2: LDA #'/ ; DASM FOR '/'

 BCC PT3

 EOR #%01110011

PT3: JSR $CC12

 INC PT1+1

 BNE PT1

 INC PT1+2

 BNE PT1

 LDA #%01110011

 EOR PT2+1

 STA PT2+1

 LDA #$C0

 STA PT1+2

 BMI PT1

33

$20
Category: 6502

; $00 < VAL_1 < VAL_2 < $FF

PTA: CLC

 ADC #$FF - VAL_2

 ADC #VAL_2 - VAL_1 + 1

 RTS

PTB: SEC

 SBC #VAL_1

 SBC #VAL_2 - VAL_1 + 1

 RTS

34

$21
Category: 6502

 SEC

 LDA ADDR32_1+1

 SBC ADDR32_2+1

 BVC PT1

 EOR #$80

PT1: BMI PT3

 BVC PT2

 EOR #$80

PT2: BNE PT4

 LDA ADDR32_1

 SBC ADDR32_2

 BCC PT3

35

$22
Category: 6502

 LDA ADDR_1

 EOR ADDR_2

 STA ADDR_1

 EOR ADDR_2

 STA ADDR_2

 EOR ADDR_1

 STA ADDR_1

36

$23
Category: 6502

 STA ZP_ADDR

 LDA #$80

PT1: BIT ZP_ADDR

 BNE PT2

 LSR

 BCC PT1

PT2: RTS

37

$24
Category: Various

 STX ZP_ADDR16

 STY ZP_ADDR16+1

 LDY #0

PT1: LDA (ZP_ADDR16),Y

 BEQ PT6

 CMP #$7B

 BCS PT5

 CMP #$41

 BCC PT5

 CMP #$4E

 BCC PT2

 CMP #$5B

 BCC PT3

 CMP #$61

 BCC PT5

 CMP #$6E

 BCS PT3

PT2: ADC #$0D

 BNE PT4

PT3: SEC

 SBC #$0D

PT4: STA (ZP_ADDR16),Y

PT5: INY

 BNE PT1

 INC ZP_ADDR16+1

 JMP PT1

PT6: RTS

38

$25
Category: 6502

 TAX

 ;

 TAY

 ;

 TSX

 ;

 TXA

 ;

 TXS

 ;

 TYA

39

$26
Category: Atari 8-bit / Commodore 8-bit

PT1: CMP #$20 | PT1: CMP #$20

 BCC PT3 | BCC PT5

 CMP #$60 | CMP #$40

 BCC PT2 | BCC PT6

 CMP #$80 | CMP #$60

 BCC PT4 | BCC PT4

 CMP #$A0 | CMP #$80

 BCC PT3 | BCC PT2

 CMP #$E0 | CMP #$A0

 BCS PT4 | BCC PT4

PT2: SBC #$1F | CMP #$C0

 RTS | BCC PT3

PT3: ORA #%01000000 | CMP #$FF

PT4: RTS | BCC PT5

 | LDA #$5E

 | RTS

 | PT2: AND #%11011111

 | RTS

 | PT3: EOR #%11000000

 | RTS

 | PT4: EOR #%01000000

 | RTS

 | PT5: EOR #%10000000

 | PT6: RTS

40

$27
Category: 6502

 LDA ADDR_1

 EOR ADDR_2

 AND ADDR_3

 BEQ PT1

41

$28
Category: 6502

PTA: EOR ADDR

 AND #%00111100

 EOR ADDR

 STA ADDR

 RTS

PTB: EOR ADDR

 AND #%11000011

 EOR ADDR

 RTS

42

$29
Category: 6502

 LDX #0

 LDA ADDR_1

 BEQ PT2

PT1: INX

 DEC ADDR_1

 AND ADDR_1

 STA ADDR_1

 BNE PT1

PT2: RTS

43

$2A
Category: 6502

 ORG $0900

 LDY #$0E ; 0900 A0 0E

 LDA $0901,Y ; 0902 B9 01 09

 EOR $0900,Y ; 0905 59 00 09

 STA $0901,Y ; 0908 99 01 09

 INY ; 090B C8

 CPY #$B7 ; 090C C0 B7

 BNE $0932 ; 090E D0 22

 .BYTE $D2,$C7 ; 0910 D2 C7

 CLC ; 0912 18

 LSR $A9,X ; 0913 56 A9

 . . .

44

$2B
Category: Various

 LDA $FFFA

 CMP #$18

 BNE PT2

PT1: INC $02c8

 JMP PT1

PT2: CMP #$43

 BNE PT4

PT3: INC $D020

 JMP PT3

PT4: CMP #$05

 BEQ PT3

 CMP #$A4

 BNE PT6

PT5: INC $FF19

 JMP PT5

PT6: CMP #$A9

 BNE PT8

 LDA $900F

 AND #$F8

 STA PT8

PT7: INX

 TXA

 AND #$07

 ORA PT8

 STA $900F

 JMP PT7

PT8: RTS

45

$2C
Category: 6502

PTA: STA ADDR_1

 LSR ADDR_1

 EOR ADDR_1

 RTS

PTB: STA ADDR_1

PT1: LDY ADDR_1

 BEQ PT2

 LSR ADDR_1

 EOR ADDR_1

 JMP PT1

PT2: RTS

46

$2D
Category: 6502

PT1: LDX #$44

 .BYTE $2C

PT2: LDX #$57

 .BYTE $2C

PT3: LDX #$59

47

$2E
Category: Apple II

PT1:

 .BYTE $15,$93,$17,$A3,$35,$CE,$6C,$10,$B9,$66,$19,$D0

 .BYTE $8B,$49,$0C,$D2,$9B,$67,$36,$08,$DC,$B3,$8C,$68

 .BYTE $45,$25,$06,$E9,$CD,$B3,$9B,$84,$6E,$5A,$46,$34

 .BYTE $23,$12,$03,$F4,$E7,$DA,$CE,$C2,$B7,$AD,$A3,$9A

 .BYTE $91,$89,$81,$7A,$73,$6D,$67,$61,$5C,$56,$52,$4D

 .BYTE $49,$45,$41,$3D,$3A,$36,$33,$30,$2E,$2B,$29,$26

 .BYTE $24,$22,$20,$1F,$1D,$1B,$1A,$18,$17,$16,$14,$13

 .BYTE $12,$11,$10,$0F,$0E,$0E,$0D,$0C,$0B,$0B,$0A,$0A

PT2:

 .BYTE $09,$08,$08,$07,$07,$06,$06,$06,$05,$05,$05,$04

 .BYTE $04,$04,$04,$03,$03,$03,$03,$03,$02,$02,$02,$02

 .BYTE $02,$02,$02,$01,$01,$01,$01,$01,$01,$01,$01,$01

 .BYTE $01,$01,$01,$00,$00,$00,$00,$00,$00,$00,$00,$00

 .BYTE $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00

 .BYTE $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00

 .BYTE $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00

 .BYTE $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00

48

$2F
Category: 6502

PT1: LDX #$00

 TXS

 LDA #>PT1

 PHA

 LDA #<PT1

 PHA

 JMP ($01FF)

49

$30
Category: 6502

 LDY #16

 JSR PT1

 RTS

PT1: LDA ADDR16

PT2: ASL

 ROL ADDR16+1

 BCC PT3

 EOR #%00111001

PT3: DEY

 BNE PT2

 STA ADDR16

 RTS

ADDR16: .BYTE $AA,$AA

50

$31
Category: 6502

 STA ADDR

 SED

 LDX #8

PT1: ASL ADDR

 LDA ADDR16

 ADC ADDR16

 STA ADDR16

 LDA ADDR16+1

 ADC ADDR16+1

 STA ADDR16+1

 DEX

 BNE PT1

 CLD

 RTS

ADDR16: .BYTE $00,$00

51

$32
Category: Atari 2600

 . . .

 BRK

 .BYTE VAL1

 . . .

PT1: PLP

 TSX

 INX

 DEC $00,X

 LDA ($00,X)

 . . .

 RTS

 . . .

 ORG $FFFE

 .BYTE <PT1, >PT1

52

$33
Category: 6502

 CMP #$C9

 CMP #$C9

 CMP #$C9

 CMP #$C9

 CMP #$C9

 CMP #$C9

 CMP $EA

53

$34
Category: 6502

 STA ADDR

 LSR

 ADC #$15

 LSR

 ADC ADDR

 ROR

 LSR

 ADC ADDR

 ROR

 LSR

 ADC ADDR

 ROR

 LSR

54

$35
Category: 6502

 LDA #$40

PT1: .BYTE $CF, <ADDR_1, >ADDR_1

 BNE PT1

 RTS

ADDR_1: .BYTE $5A

55

$36
Category: 6502

 LDA VAL |

 BPL PT1 | PT1: CMP #$41

 AND #$7F | BCC PT2

 JSR PT1 | EOR #$7F

 EOR #$FF | ADC #$00

 CLC | PT2: ASL

 ADC #$01 | TAX

 PHA | LDA PT3,X

 TXA | PHA

 EOR #$FF | LDA PT3+1,X

 ADC #$00 | TAX

 TAX | PLA

 PLA | RTS

 RTS |

PT3:

 .WORD $0000,$0324,$0647,$096A,$0C8B,$0FAB,$12C8,$15E2

 .WORD $18F8,$1C0B,$1F19,$2223,$2528,$2826,$2B1F,$2E11

 .WORD $30FB,$33DE,$36BE,$398C,$3C56,$3F17,$41CE,$447A

 .WORD $471C,$49B4,$4C3F,$4EBF,$5133,$539B,$55F5,$5842

 .WORD $5A82,$5CB4,$5ED7,$60EC,$62F2,$64EB,$66CF,$68A6

 .WORD $6A6D,$6C24,$6DC4,$6F5F,$70E2,$7255,$73B5,$7504

 .WORD $7641,$776C,$7884,$798A,$7A7D,$7B5D,$7C2A,$7CE3

 .WORD $7D8A,$7E1D,$7E9D,$7F09,$7F62,$7FA7,$7FD8,$7FF6

 .WORD $7FFF

56

$37
Category: 6502

PT1: STX ADDR | STA ADDR32+1

 STA ZP_ADDR16+1 | LDA #$20

 LDY #0 | EOR ADDR32+0

 STY ZP_ADDR16 | STA ADDR32+0

 CLC | PT4: DEX

 JSR PT5 | BNE PT3

PT2: LDA (ZP_ADDR16),Y | INY

 LDX #8 | BNE PT2

 EOR ADDR32+0 | INC ZP_ADDR16+1

 STA ADDR32+0 | DEC ADDR

PT3: LSR ADDR32+3 | BNE PT2

 ROR ADDR32+2 | SEC

 ROR ADDR32+1 | JSR PT5

 ROR ADDR32+0 | RTS

 BCC PT4 | PT5: LDX #3

 LDA #$ED | PT6: LDA #$FF

 EOR ADDR32+3 | BCC PT7

 STA ADDR32+3 | EOR ADDR32+0,X

 LDA #$B8 | PT7: STA ADDR32+0,X

 EOR ADDR32+2 | DEX

 STA ADDR32+2 | BPL PT6

 LDA #$83 | RTS

 EOR ADDR32+1 |

57

$38
Category: 6502/65C02

 SED

 CLC

 LDA #$99

 ADC #$01

 CLD

58

$39
Category: 6502

 CPX #$03

 BCS PT2

 CPY #$00

 BNE PT1

 LDY #$06

PT1: DEY

PT2: EOR #%01111111

 CPY #$C8

 ADC PT4,X

 STA PT4

 TYA

 JSR PT3

 SBC PT4

 STA PT4

 TYA

 LSR

 LSR

 CLC

 ADC PT4

PT3: ADC #7

 BCC PT3

 ADC #$00

 RTS

PT4: .BYTE 0,1,5,6,3,1,5,3,0,4,2,6,4

59

$3A
Category: 6502

ZP_ADDR_1 .BYTE $07,$07,$07,$07,$07,$07,$07,$07

ZP_ADDR_2 .BYTE $FF,$FF,$FF,$FF,$FF,$FF,$FF,$07

. . .

PT1: LDX #7 | BEQ PT7

PT2: LDA ZP_ADDR_1,X | LDA #$00

 STX ADDR_1 | STA ADDR_2

 TAX | TXA

 DEC ZP_ADDR_2,X | TAY

 LDX ADDR_1 | PT6: DEY

 DEC ZP_ADDR_1,X | BMI PT5

 BPL PT3 | LDA ZP_ADDR_1,Y

 LDY #7 | SEC

 STY ZP_ADDR_1,X | SBC ZP_ADDR_1,X

 INC ZP_ADDR_2+7 | INC ADDR_2

 DEX | CMP ADDR_2

 BPL PT2 | BEQ PT1

 BMI PT8 | EOR #$FF

PT3: TAX | SEC

 INC ZP_ADDR_2-1,X | ADC #$00

 LDX #7 | CMP ADDR_2

PT4: LDY ZP_ADDR_2,X | BNE PT6

 BNE PT1 | BEQ PT1

 DEX | PT7: CLC

 BPL PT4 | RTS

 LDX #8 | PT8: SEC

PT5: DEX | RTS

60

$3B
Category: 6502

PTA: LDX #$FF | BMI PT6

 LDA ADDR_2 | BEQ PT6

 SEC | LDA ADDR_9

 SBC ADDR_4 | SEC

 BPL PT1 | SBC ADDR_6

 LDX #$01 | STA ADDR_9

 JSR PT5 | LDA ADDR_1

PT1: STA ADDR_6 | CLC

 STX ADDR_8 | ADC ADDR_7

 LDX #$FF | STA ADDR_1

 LDA ADDR_1 | PT6: PLA

 SEC | CMP ADDR_6

 SBC ADDR_3 | BPL PT7

 BPL PT2 | LDA ADDR_9

 LDX #$01 | CLC

 JSR PT5 | ADC ADDR_5

PT2: STA ADDR_5 | STA ADDR_9

 STX ADDR_7 | LDA ADDR_2

 CMP ADDR_6 | CLC

 BEQ PT3 | ADC ADDR_8

 BPL PT4 | STA ADDR_2

PT3: LDA ADDR_6 | PT7: LDA ADDR_1

 JSR PT5 | CMP ADDR_3

PT4: STA ADDR_9 | BNE PT8

 ASL ADDR_5 | LDA ADDR_2

 ASL ADDR_6 | CMP ADDR_4

 RTS | BEQ PT9

PT5: EOR #$FF | PT8: CLC

 CLC | PT9: RTS

 ADC #$01 | ADDR_5: BRK

 RTS | ADDR_6: BRK

PTB: LDA ADDR_9 | ADDR_7: BRK

 PHA | ADDR_8: BRK

 CLC | ADDR_9: BRK

 ADC ADDR_5 |

61

$3C
Category: 6502

PT0:

 .BYTE $97,$49,$20,$44,$4F,$4E,$27,$54 ; —I DON'T

 .BYTE $20,$4B,$4E,$4F,$57,$20,$48,$41 ; KNOW HA

 .BYTE $4C,$46,$20,$4F,$46,$20,$59,$4F ; LF OF YO

 .BYTE $55,$27,$F4,$86,$41,$53,$20,$57 ; U'ô†AS W

 .BYTE $45,$4C,$4C,$17,$F8,$D6,$8E,$53 ; ELL.øÖŽS

 .BYTE $48,$4F,$55,$4C,$44,$20,$4C,$49 ; HOULD LI

 .BYTE $4B,$45,$20,$41,$4E,$44,$ED,$27 ; KE ANDí'

 .BYTE $F5,$86,$4C,$45,$53,$53,$20,$54 ; õ†LESS T

 .BYTE $48,$ED,$7F,$C1,$57,$C1,$17,$EC ; Hí.ÁWÁ.ì

 .BYTE $86,$44,$45,$53,$45,$52,$56,$45 ; †DESERVE

 .BYTE $00

PT1: LDA #<PT8 | BEQ PT8

 STA ZP_ADDR16_1 | ASL

 LDA #>PT8 | BCC PT6

 STA ZP_ADDR16_1+1 | BPL PT2

 LDA #<PT0 | LDX #$07

 STA ZP_ADDR16_2 | .BYTE $F0 ; BEQ NOP

 LDA #>PT0 | PT6: INY

 STA ZP_ADDR16_2+1 | LDA (ZP_ADDR16_2),Y

 JMP PT5 | ADC ZP_ADDR16_1

PT2: INY | STA ZP_ADDR16_3

 LDA (ZP_ADDR16_2),Y | TXA

 STA (ZP_ADDR16_1),Y | ORA #$F8

 DEX | ADC ZP_ADDR16_1+1

 BMI PT2 | STA ZP_ADDR16_3+1

 TYA | TYA

 PHA | PHA

 CLC | LDY #1

PT3: ADC ZP_ADDR16_1 | LDA (ZP_ADDR16_3),Y

 STA ZP_ADDR16_1 | STA (ZP_ADDR16_1),Y

 BCC PT4 | PT7: INY

 INC ZP_ADDR16_1+1 | LDA (ZP_ADDR16_3),Y

PT4: PLA | STA (ZP_ADDR16_1),Y

 SEC | TXA

 ADC ZP_ADDR16_2 | SBC #$08

 STA ZP_ADDR16_2 | TAX

 BCC PT5 | BPL PT7

 INC ZP_ADDR16_2+1 | TYA

PT5: LDY #0 | BCC PT3 ; ALWAYS

 LDA (ZP_ADDR16_2),Y | PT8: RTS

 TAX |

62

$3D
Category: 6502

; AT $8000, BUT A BIT OFF...

8014 8E 32 A0 STX $A032

8017 8D 33 A0 STA $A033

801A 7D CA 5F ADC $5FCA,X

801D BD DE 5F LDA $5FDE,X

8020 EA NOP

8021 C0 35 CPY #$35

8023 F0 D2 BEQ $7FF7

8025 40 RTI

8026 09 00 ORA #$00

63

$3E
Category: 6502

 ORG $1000

 SEI ; 2

 SEC ; 2

 LDY #253 ; 2

 LDX #255 ; 2

PT1: LDA #44 ; 2*255*253

PT2: SBC #1 ; ETC.

 BNE PT2 ; CYCLES TO DECODE...

 DEX

 BNE PT1

 LDX #255

 LDA #12

PT3: SBC #1

 BNE PT3

 BIT PT3

 DEY

 BNE PT1

 RTS

64

$3F
Category: 6502

 ORG $4040

 DC ")@)?8iAH8izipi!Hiziai!Hi20$hHizi]i!LG@"

; AS BYTES:

; $29, $40, $29, $3F, $38, $69, $41, $48

; $38, $69, $7A, $69, $70, $69, $21, $48

; $69, $7A, $69, $61, $69, $21, $48, $69

; $32, $30, $24, $68, $48, $69, $7A, $69

; $5D, $69, $21, $4C, $47, $40

65

Commentary

$00 Category: 6502
Perform an equality check without using CMP; unlike using CMP,
this approach leaves the carry flag alone. It modifies the
accumulator value (which could be restored with a second EOR
#VAL_1).

$01 Category: 6502
A 16-bit decrement.

$02 Category: 6502
Branch if ADDR_1 <= ADDR_2. The example on the right is the
same, but for signed values.
Note: An instruction can be removed if one flips the order of the
comparators; i.e., the left example could be rewritten as:

 LDA ADDR_2

 CMP ADDR_1

 BCS PT1

$03 Category: Apple II
Produce a tone on an Apple II. Reading from or writing to
(strobing) $C030 toggles the flip-flop to the speaker, reversing the
flow of current in the coil, moving the speaker cone either in or out.
Two such toggles complete a square-wave period, and the toggle
rate determines pitch (audible if from 20 to 20,000Hz).

66

These code examples come directly from the Apple II ROM that
produces the system beep via a bell routine ($FBD9) and a wait
routine ($FCA8). The inner-accumulator loop sets the pitch, while
the outer-Y-register loop sets the duration. On an NTSC Apple II,
this produces a ~1KHz tone (a B5) that lasts about a 10th of a
second.

$04 Category: 6502
Toggles the upper/lower case of a letter. Commodore 8-bit, Atari 8-
bit, Acorn Electron, BBC Micro, ORIC-1/Atmos, and other 6502-
based machines use ASCII-like character encodings. These
machines all feature alphabet ranges offset by 32 from another
opposite-case alphabet range.
Note: The book xchg rax,rax uses this example (in x86 assembly) for
problem 0x04.

$05 Category: Atari 2600
Standard Atari 2600 game cartridge boilerplate for initializing its
hardware that starts in an undefined state. First, interrupts are
turned off (a common practice in 2600 game carts, even though the
6507 processor has no IRQ or NMI pins). Decimal mode is cleared
and the top of the stack is set (to empty). Page zero is cleared,
specifically, the TIA (Television Interface Adaptor) registers from
$00 to $2C and the 128 bytes of RAM from $80 to $FF.

67

$06 Category: 6502
Multiply accumulator by -1, aka, perform a two's complement.
Performed by inverting and adding 1. Example, 2 becomes -2:

 %00000010 -> %11111101 -> %11111110

$07 Category: 6502
This infinite loop will count up from a given value, wrap, and cease
incrementing once reaching zero. The compare with 1 will set the
carry only if the accumulator > 0, and only if the carry is set will
the ADC #$00 increment.

$08 Category: 6502
Toggles the carry. Is nondestructive to the accumulator value, but
affects the N and Z flags. This example is from Lee Davidson's
collection of very short code bits (Davidson's website content
recovered / reconstructed by Hans Otten).

$09 Category: 6502
The 6502 has a CLV instruction to clear the oVerflow flag, but there
is no corresponding instruction to set the flag. Performing BIT on
an RTS is a synthetic instruction that sets the V flag. (A synthetic
instruction is either an assembler alias for one or more instructions,
or as in this case, is one or more instructions that represent an
unimplemented instruction).
The BIT instruction takes an 8-bit (ZP) or 16-bit memory location,
and transfers bit 7 (the left-most bit) and bit 6 of the value at that

68

address into the N and V flags respectively (bits 7 and 6 of the
status register). Since the RTS opcode is %01100000, this code
example sets the V flag. RTS instructions are common, so there is
usually one nearby to press into service.
Another way to set the oVerflow flag is via pin 38 (SO) on the 6502
itself. Most Commodore-designed floppy drives set the V flag in this
way (via pin 38) when a byte of data has finished being read (flux
to GCR) or written (GCR to flux). This is why the Commodore 1541
floppy disk drive ROM contains a few dozen examples of this code
pattern:

PT1: BVC PT1

 CLV

Nate Lawson explains: "This pin was also labeled CPS (‘Chuck Peddle
Special’) in the earliest versions of the 6502 since the designer was an
advocate for this behavior. Chuck imagined the 6502 as a cheap
microcontroller for embedded and industrial devices, and this was a
convenient way to interface with an external peripheral. I haven’t seen
any other devices use this pin other than Commodore disk drives..."
Notes:
− The BIT instruction also ANDs together the accumulator and

memory, setting the Z flag on the result (then tossing that result).
− Until the advent of the 65C02, the BIT instruction didn't support

immediate addressing, but you can fake it by pointing the
operand address to a known byte value; i.e., for a Z-flag test of bit
6, choose an address holding an RTI (RTI is %01000000), for bit 5
a JSR, bit 4 a BPL, and for bit 3 a PHP.

69

$0A Category: NES
A technique some Nintendo games use to quickly move data to the
PPU (Picture Processing Unit). The PPU has exclusive access to
video memory while it sends a picture to the screen. The CPU may
access video memory during the relatively-short vblank vertical
blanking interval (or by forcing blanking). Games can be designed
to buffer their video updates before rapidly sending the collected
data to the PPU (i.e., the $2007 VRAM read/write register) during a
vblank. A common place to buffer is in the stack. An unrolled STA
loop of PLA / STA $2007 pairs is more space efficient than LDA
ADDR+offset / STA $2007 pairs, and consumes the same number
of cycles.

$0B Category: 6502
Swaps nybbles in the accumulator value, using only the status
register. Referenced by David Galloway on the Facebook 6502
Programming group.

$0C Category: 6502
Executing $02 will freeze the processor. Copy protection programs
sometimes snuck such a "JAM" instruction ($02) into the execution
path if tampering (or a copy) was suspected. This JAM was
sometimes executed if a checksum over the code bytes didn't give
the expected result.
In this example, the code assumes it's running in ROM (i.e., a game
cartridge), and will crash if it detects that it can change what should
be read-only memory. Note: this approach will crash an NMOS

70

6502 but not a 65C02 system (e.g., Apple IIe enhanced or
GameKing I/II) or 65SC02 system (e.g., Watara Supervision or Atari
Lynx).

$0D Category: 6502
Perform integer division by 2 for a signed number. Here's a visual
reminder of the number line for 8-bit signed values:

 ... -3 -2 -1 +0 +1 +2 +3 ...

 FD FE FF 00 01 02 03

While an LSR-based divide-by-2 rounds down towards zero (e.g., 5
becomes 2), for negative numbers, this approach also rounds down,
but away from zero (e.g., -5 becomes -3).

$0E Category: 6502
Perform an 8-bit rotate right (in contrast to the ROR, a 9-bit rotate
right through the carry).
Note: Copy protection on the Apple II version of The Goonies
(Datasoft, 1985) used this sequence for decryption.

$0F Category: 6502
Lateral thinking required (not reading of control flow). The
instructions are in increasing cycle-count order, from 2 cycles to 7.

71

$10 Category: 6502
Early 6502 chips had a broken ROR instruction. This code example
is a proposed ROR workaround described in the November 1975
issue of BYTE Magazine (page 58, table II).

$11 Category: 6502
Two examples that reverse the order of bits. The first requires
fewer bytes and 109 cycles; the second is larger, but only consumes
29 cycles. Of course, the fastest approach would be a single lookup
instruction into a table of 256 precomputed values. There's plenty
of opportunity for readers to find smaller, faster, worst-case faster,
and/or constant-time versions of all the examples in this book.

$12 Category: Atari 8-bit / Commodore 64
Read the joystick up/down into Y (-1, 0, 1) and left/right into X (-1,
0, 1). Reading the C64 joystick 1 or the Atari 8-bit stick 0 will
produce the same lower nybble values for the same joystick
directions:

 C64 Atari 8-bit

 $DC01 $0278

 Up: %11111110 %00001110

 Down: %11111101 %00001101

 Left: %11111011 %00001011

 Right: %11110111 %00000111

The Atari 400/800 joystick I/O is handled by its MOS MCS6520
Peripheral Interface Adapter (PIA) chip. The Commodore 64 uses
the MOS 6526/8520 Complex Interface Adapter (CIA) chip, a
descendant of the PIA.

72

As with many of the examples in this book, using the computer's
screen memory is a great way to test. In this case, build an infinite
loop that calls the joystick read routine and does an STX $0400 /
STY $0401 (C64) or STX $9C40 / STY $9C41 (Atari 8-bit). The two
top-left-most characters on the display will reflect the joystick
direction, showing screen code symbols for 1, 0, or -1 (255).

$13 Category: 6502
These additional "synthetic instructions" are available if you can
afford a page (256 bytes) of constants. It's like having TYX, TXY,
AND X, AND Y, ORA X/Y, EOR X/Y, ADC X/Y, SBC X/Y, and CMP
X/Y. You can also point BIT directly to a table entry with a desired
bit test pattern, as if BIT took an immediate value.

$14 Category: 6502
This takes the single byte in ADDR_1, multiplies by 40, and puts the
16-bit result in ADDR_2. Such a routine is useful in screen
positioning logic on 40-column displays. val*40 was decomposed
into shifts and adds:

 (val*8)*5 = val*8*4 + val*8 = (val<<3)<<2 + (val<<3)

Can you find a faster way?
In comparison, generalized multiplication routines can be much
shorter. This example multiplies NUM1 * NUM2, weighs in at just
26 bytes, but requires more (and a varying number) of cycles:

73

 LDA #$80

 STA RESULT

 ASL

 DEC NUM1

PT1: LSR NUM2

 BCC PT2

 ADC NUM1

PT2: ROR

 ROR RESULT

 BCC PT1

 STA RESULT+1

Note: Toby Nelson has open-sourced a test suite that exhaustively
compares over 120 6502 multiplication routines.

$15 Category: 6502
In an interrupt handler routine, determine if the source was an IRQ
(hardware) or BRK (software) interrupt by reading a flags byte in
the stack and testing bit 4. (It's sometimes necessary to differentiate
between the two because IRQ and BRK both use the same vector at
$FFFE.)
There is a subtle bug in this code: it's not safe when the stack wraps.
Can you find and fix the bug? (Hint: change one instruction and
add two more).
Despite what your favorite emulator or monitor (or book) may tell
you, the B flag does not maintain its state in the 6502 status
register. It only exists as a bit within a byte that gets pushed to the
stack during an IRQ entry sequence. BRK and PHP put B=1 on the
stack, while IRQ and NMI put B=0. A PLP or RTI instruction can
restore stack-stored flags to the status register, but the B flag state
has no place to go, as there's no register storage for it on the CPU.
So its existence must be tested while it's still on the stack.

74

The belief that the break flag state exists in the status register can
lead to errors. Avery Lee describes such a bug in the Atari 8-bit OS
Version A (included in early NTSC Atari 400/800 systems). Its BRK
handler can mistake IRQs for BRKs by pushing the status register to
the stack and checking that byte in a vain attempt to get the B flag
state. But the B flag doesn't have a defined register state to be
pushed, and PHP always pushes bit 4 as a 1.

$16 Category: 6502
Performs exclusive-or functionality without using an EOR
instruction. In pseudo code, this is done via the equation:

 val1 XOR val2 = (val1 OR val2) - (val1 AND val2)

6502-based copy protection code is frequently exclusive-or
obfuscated, which is why reversers often start by hunting for EOR
instructions. Various methods were used to hide EOR instructions
in software loaders.

$17 Category: 6502
This code will jump to the address it finds at ADDR+X (presumably
a table of addresses). Had RTS been used instead of RTI (to avoid
the PHP), the address would have to be one less than the intended
target, since RTS adds one to the address it pulls from the stack. (A
later example will use the RTS approach.)

75

$18 Category: Assembler
This is dasm syntax for making sure that addresses PT1 and PT2 do
not fall on separate pages. This guard code makes sure that cycle-
exact sections of code don't span page boundaries unexpectedly
since each branch across a page boundary incurs an additional
cycle.

$19 Category: 6502
Determines the page containing the executing code. After the JSR,
the stack is pointing to the high byte of the address (the page)
hosting the RTS. The stack index is used to load that page number
into the accumulator.
Note: This technique is described in Byte Magazine Volume 10, issue
6 (June, 1985) in "6502 Tricks and Traps", by Joe Holt. It's also
used in the Apple II boot PROM to discover which expansion slot is
executing code.

$1A Category: 6502
Get the program counter. Can be used in assisting code relocation,
or in preventing code relocation (from analysis, repacking, etc.).
The book xchg rax,rax uses a similar example (in x86 assembly) for
problem 0x1a.

$1B Category: Various
Example of a JSR that "passes a string"; the string immediately
follows the JSR instruction, as if it were a call parameter. The

76

location of the start of the string is derived from the return address
on the stack. RTS pulls two bytes from the stack (low first), and
sets the program counter to that address + 1. On entry, the stack
points to the byte before the start of the string, and on exit, the
stack points to the null ($00) at the end of the string.
Even more systems to try:
− $FFD2 also works on the Commander X16 (a modern 6502-based

system).
− Will work on the ORIC ATMOS (V1.1) using $F77C, but the code

must be modified to put the character in the X register (not the
accumulator).

$1C Category: 6502
Like a BASIC "ON X GOTO" or C switch() statement, this self-
modifying code supports different branch destinations based on an
X register index.

$1D Category: 6502
Implements Euclid's Greatest Common Divisor algorithm, detailed in
his Elements (written 300 BC). When iterating, performs a swap to
make sure the smaller working value is always subtracted from the
larger. The SBC result is always >= 1, so the BCS that follows is
an unconditional branch.

$1E Category: 6502
Converts a hex digit (0 to F) to ASCII. This four-line method was
found in a decimal mode tutorial by Bruce Clark.

77

BCD caveat: Unlike the 65C02, the NMOS 6502 does not
automatically clear decimal mode on interrupts. When an interrupt
occurs, the status register (which includes the current binary or
decimal mode state) is put on the stack, and then restored after the
interrupt. But if an interrupt routine on an NMOS 6502 uses an
ADC or SBC, it may have (unwisely) assumed that it is in binary
mode (without the precaution of a CLD instruction). This happened
with the Commodore 64 kernal's housekeeping interrupt handler.
So if trying this example on a Commodore 64, be sure to wrap the
code in a warm, safe SEI/CLI blanket.

$1F Category: Oric-1
This program creates an emergent maze-like display by generating a
random-looking sequence of forward (ASCII 47) and back (ASCII
92) slash symbols. These mazes have been repopularized in the last
decade by Nick Montfort's 2014 book (with the unwieldy title) 10
PRINT CHR$(205.5+RND(1)); : GOTO 10, and the 8-bit Show and
Tell Youtube channel (where Robin Harbron reimplements the maze
in various ways to demonstrate early computer languages, different
8-bit systems, and opportunities for optimization).
The code example targets an Oric-1 (v1.0), printing symbols via the
routine at $CC12. It uses multiple instances of self-modifying code.
The appearance of randomness comes from choosing the slash
directions based upon the least significant bits of the BASIC ROM
bytes from $C000 to $FFFF. The program repeatedly loops through
this ROM range, and on every-other repeat, the assignment of slash
directions is reversed.

78

Slash-maze generators that make use of system-specific memory-
mapped I/O can be much smaller, as this Atari 8-bit implementation
(posted by xxl in the AtariAge forums) demonstrates:

PT1: ROL $D20A ; GET RANDOM FROM AN LFSR

 LDA #$03

 ROL ; 6='/', 7='\'

 JSR $F2B0 ; PRINT

 BCS PT1

Even shorter is this four-line Commodore 64 version developed by
Paul Kocyla. It uses some clever stack manipulations and return-
oriented programming. After launching the maze code at $2F00
with "SYS 12032", the SYS BASIC ROM routine forces address $E146
on the stack, then indirect JMPs to $2F00:

2F00 PLA ; A = $E1

2F01 ROR $DC04 ; GET CARRY FROM CIA1 TIMER A LOW BYTE

2F04 ADC #$87 ; 205 ('\') OR 206 ('/')

2F06 JSR $E717 ; ENTER PRINT ROUTINE, SKIP FIRST PHA

The print routine finishes by returning to the part of the SYS routine
that forces address $E146 on stack and then JMPs to $2F00, closing
the loop.

$20 Category: 6502
Test if an unsigned byte is within the range VAL_1 to VAL_2
(inclusive). Only requires 3 instructions, but at the cost of
modifying the value being tested. The 1st approach (PTA) sets the
carry if the accumulator is within the range. The 2nd approach
(PTB) clears the carry if the accumulator is in the range. Recall that
1) if an addition result is 0 to 255, the carry is cleared, but if
greater than 255, it's set, and 2) if a subtraction result is 0 to 255,

79

the carry is set, but if less than 0, it's cleared. Code examples found
in Lee Davidson's collection of very short code bits.

$21 Category: 6502
A 16-bit signed comparison that branches to PT3 if ADDR32_1 <
ADDR32_2, otherwise PT4. N, Z, and C flags work as you'd expect.
Described on Bruce Clark's excellent webpage Beyond 8-bit Unsigned
Comparisons.

$22 Category: 6502
This is an obfuscated way of swapping two values. It's based on the
old (and terrible) interview question concerning how to swap two
stored values without using a 3rd intermediate stored value, for
which a solution is:

 x = x xor y

 y = x xor y

 x = x xor y

$23 Category: 6502
Rounds the accumulator down to the nearest power of 2. Created
by Antonio Savona and contributed here by Robin Harbron.

$24 Category: Various
Perform an in-place ROT-13 on a mixed-case, zero-terminated ASCII
string.

80

$25 Category: 6502
Why is TXS unlike the others? It doesn't touch the flags; all the
other transfer instructions set N and Z.

$26 Category: Atari 8-bit / Commodore 8-bit
The first example converts an Atari ATASCII character to its screen
code. The second example does the same for Commodore PETSCII.
A screen code is the character encoding used in the RAM backing
the user's text display. The characters' numeric values reflect the
order of the graphic bitmap definitions found in the system's
character ROM.

$27 Category: 6502
For bit positions set to 1 in ADDR_3, test that those bit positions in
ADDR_1 and ADDR_2 have the same values. If so, the BEQ branch
is taken.
For example, if ADDR_3 is %10101010, the code will branch if the
values of bits 7, 5, 3, and 1 are the same for both ADDR_1 and
ADDR_2.

$28 Category: 6502
Two routines that copy the values of specified bits. In the 1st
example (PTA), the bits in the accumulator that are specified by 1s
in the AND mask have their values copied into ADDR. In the 2nd
example (PTB), the bits in ADDR that are specified by 0s in the AND
mask have their values copied into the accumulator. While the

81

approach generalizes to any bit selection, in these specific examples,
the middle 4 bits (bits 2 through 5) are copied. Thanks to
"supercat" in the AtariAge forums for this concept.

$29 Category: 6502
Count the number of bits set to 1 in the accumulator using Dr. Brian
Kernighan's classic bit counting algorithm.

$2A Category: 6502
A varying-mask exclusive-or deobfuscation loop in the game loader
code for the C64 version of Robots of Dawn (EPYX, 1984). Note that
the branch that drives the loop is itself deobfuscated (repaired)
before the first pass of the loop completes. In this code excerpt, the
last seven bytes at $090E become $D0, $F2, $20, $E7, $FF, $A9,
and $00, which is BNE $0902, JSR $FFE7, and LDA #$00.

$2B Category: Various
This code will cycle the border colors on Atari 8-bit and some
Commodore 8-bit (i.e., C64, C128, VIC-20, Plus/4 (C16)) machines
in platform-specific ways. It detects which system it's on by looking
at the differences in the NMI vector that the 6502 expects at $FFFA.
Note: changing the border color is a time-honored debugging
technique akin to printing "got this far".

82

$2C Category: 6502
The first code snippet (PTA) converts a byte to its corresponding 8-
bit reflected Gray code, and the second (PTB) reverses the process.
Gray codes are an ordering of binary numbers such that two
adjacent values differ by only one bit value. There are many useful
types of Gray codes, but the simplest to construct is the reflected
Gray code.

$2D Category: 6502
Sometimes instruction operands are themselves valid operators; this
creates opportunities for jumping into the middle of instructions. In
this example, operands are also BIT instructions that function as
faux NOPs to support compact branching logic. If entered at PT3, X
is set to $59. If entered at PT2, X is set to $57 (LDX #$57, BIT
$59A2). And if entered at P1, X becomes $44 (LDX #$44, BIT
$57A2, BIT $59A2).
Notes:
− The C64 BASIC ROM made extensive use of this technique (see

disassembly at $AEF9, $AEFC, $B247, $B3AD, $BAC3, and
$BBC9).

− BIT is not actually a NOP, as it sets the N, V, and C flags, and if
the chosen address is I/O mapped, it could create side effects.

$2E Category: Apple II
For anyone that has coded 8-bit music in assembly, low-byte and
high-byte frequency tables are instantly recognizable. Mapping
computer frequencies to standard pitches almost always necessitates

83

lookup tables. Frequency is logarithmic, which is easy to see in the
high-byte table values.
These particular tables target the Apple II Mockingboard sound card
(Sweet Micro Systems, 1983). They were extracted by Markus
Brenner from Kenneth W. Arnold's music routines in the game
Ultima III: Exodus (Origin Systems, 1983). For each table, the
columns are A, A#, B, C, C#, D, D#, E, F, F#, G, and G#, and the
rows range from A0-G#1 (row 1) to A7-G#8 (row 8).
Arnold used slightly higher values (more flat) than suggested in the
Mockingboard documentation, and the Mockingboard
documentation also used higher values (again, more flat) than a
frequency table designed to most closely match the standard 440Hz
tuning (though Arnold's 440Hz A4 is, itself, set at the ideal
Mockingboard value of $0091).

$2F Category: 6502
An infinite loop. The stack spans page 1, growing backwards from
$01FF to $0100. LDX #$00, TXS moves the stack pointer to the
topmost index ($0100), where the high byte of address PT1 is
pushed via PHA. When the low byte is pushed on the stack, it's full,
so the indexing wraps, putting that value at $01FF (the other end of
the stack).
The indirect JMP instruction has a bug that's triggered if (and only
if) the given address ends with $FF, as happens in this code. The
CPU will construct the indirect address from the value at $0100 for
the high byte and $01FF for the low byte (instead of from $01FF
and $0200). But that separated address was precisely constructed

84

with the aforementioned stack wrapping in mind, so it takes the
program counter back to PT1, closing the infinite loop.
The indirect JMP bug was fixed in the later CMOS chips, breaking
those rare bits of code that made use of it. One such example is the
Apple II game Randamn (1983, Magnum Software). As part of its
copy protection scheme, it writes a fake address to $02FF/$0300,
and the other half of a true boot address to $0200. As such, it fails
to boot on later Apple II machines that use the 65C02.

$30 Category: 6502
Code implements a left-shift 16-bit LFSR (linear feedback shift
register). It visits every value in the set of values from 1 to 65535
in a deterministic shuffled-like order before repeating. This is the
bit of mathematical magic behind graphical fizzle in/out effects as
well as noise generators in sound chips. The Y register specifies the
number of bits (1 to 16) to left shift into a 16-bit location.
As a left-shift LFSR, you can get away with having all your XOR tap
points on just the low byte only. NES developer Brad Smith has
generated all the single-byte left-shift polynomials for 8-bit, 16-bit,
24-bit, and 32-bit LFSRs. One of those polynomial bytes was used
in this example.
A wider x86 LFSR is used in example 0x3b in xchg rax,rax.

$31 Category: 6502
Converts an 8-bit value to a 16-bit binary-coded decimal (BCD)
value. Example based on code described by Andrew Jacobs, hosted
on 6502.org.

85

BCD is often impractical for 6502 coding tasks. For simple decimal
displays like game scores, most programmers will use a byte per
digit rather than the nybble packing required by BCD.
Note: This code will not work on an NES, as Ricoh removed the
(then-) patented BCD portion of the 6502 when they cloned it. Its D
flag can still be managed with SED/CLD, but this doesn’t change the
CPU’s ADC/SBC behavior.

$32 Category: Atari 2600
This method allows a BRK statement in Atari 2600 code to call a
function and pass a byte parameter to it. When the function
finishes, control is returned to the next statement following the
BRK/parameter pair.
Thomas Jentzsch posted that he discovered this technique when
disassembling the unreleased Atari 2600 game The Lord of the Rings:
Journey to Rivendell (Parker Brothers, 1983). Since there was a
function that needed to be called throughout the game code,
programmer Mark Lesser used this BRK-call approach to save bytes.
When accessing RAM on the Atari 2600, address bit A8 is not
decoded. This means that the 6502 stack (normally $0100 to
$01FF) lives in page 0, along with the 128 bytes of RAM ($80 to
$FF) and TIA graphics/sound registers ($00 to $2C).
This BRK parameter-passing implementation assumes a zero-page
stack overlay. First, PLP discards the flags on the stack. Next, DEC
$00,X changes the stack return address to point to the parameter
that follows the BRK command, and LDA ($00,X) loads that
parameter byte. Finally, RTS pops the address off the stack,

86

increments it by one and sets the program counter. This resumes
execution at the address immediately after the passed value.
Note: The 2600's crowded zero page has created other opportunities
for some interesting cycle-saving tricks:
− Combat (Atari 2600 launch title, 1977) sets the missile 1 enable

($1E) and missile 0 enable ($1D) registers with two PHA
commands, having first positioned the stack at $1E.

− In the 2600 Pole Position port (Atari, 1983), the stack pointer is
positioned on the ball reset register ($14) and a BRK command is
executed. This strobes (touching a register for effect, irrespective
of data) the ball reset ($14), missile 1 reset ($13), and missile 0
reset ($12) registers using only three consecutive cycles. This
trick is a key element of the cycle-critical road-drawing effect.

$33 Category: 6502
Eckhard Stolberg has popularized the "clockslide", a tunable cycle-
exact delay. To tune the delay, additional code (not shown)
performs an indexed jump to any chosen byte in the set of
instructions.
Starting execution at the top of the slide consumes 15 cycles (the six
CMP #$C9 instructions are two cycles each, and the CMP $EA is
three cycles). Jumping to the top+1 results in the following
instruction decoding: five CMP #$C9 instructions, a CMP #$C5, and
a NOP, which is one fewer cycle (14 cycles). Top+2 is 13 cycles
(five CMP #$C9 instructions + a CMP $EA), etc. So by choosing
the appropriate slide entry point, every delay from 2 to 15 cycles is
available (clockslides can, of course, be made arbitrarily longer).

87

See also Duff's Device, a technique credited to Lucasfilm developer
Tom Duff in 1983.

$34 Category: 6502
Integer division of the accumulator by 3. Example from Unsigned
Integer Division Routines (revision 2, June 21, 2014) by
Omegamatrix, which has 31 accumulator-only (no X/Y usage)
constant-cycle routines, one for each divisor of 2 through 32.

$35 Category: 6502
The 6502's instruction-decoding PLA creates many unintended (but
sometimes viable) instructions. These are referred to as unintended,
illegal, and/or pseudo instructions or ops. One such instruction is
called "DCP" and will, for one of 7 addressing modes, perform a DEC
followed by a CMP. The assembly ".BYTE $CF, <ADDR_1,
>ADDR_1" could be written in some assemblers as "DCP ADDR_1".
This example decrements its way from $5A to $41 (which is "Z" to
"A" in ASCII), stopping when the ADDR_1 value equals the
accumulator value. Example adapted from NMOS 6510 Unintended
Opcodes - No More Secrets by groepaz.

$36 Category: 6502
Computes the SIN of a byte, where the input degrees are given by
the accumulator * 1.40625. Result is a signed 16-bit number,
ranging over -/+0.99997. Example is from Hans Otten's recovered
6502 code examples from Lee Davidson.

88

$37 Category: 6502
Generates a CRC-32 over a given number of (256-byte) pages. The
starting address of the data to be CRC-32ed must be page aligned,
with the accumulator specifying the high byte of the start address.
The X register specifies the number of pages to process.
CRCs are used to create short "fingerprints" of data. More
pedantically, a CRC-32 computes the remainder of a polynomial
division modulo 2 on an arbitrary-sized input, creating a (passably)
uniformly-distributed 32-bit value.
This code produces the same output values as do the CRC-32s used
by WinZip and 7-Zip (polynomial 0xEDB88320, working values
starts with 0xFFFFFFFF, and final result is XORed with 0xFFFFFFFF
as well). Code adapted from CRC-32 examples at nesdev.org.

$38 Category: 6502/65C02
The Z flag will be 0 if executed on an NMOS 6502, and 1 if
executed on a CMOS 6502 (e.g. 65C02). This example from Lee
Davidson's collection of very short code bits.

$39 Category: 6502
Computes the day of the week for any date in the year range 1900
to 2155. For X=month (1 to 12), A=day (1 to 31), and Y = year
(1900+Y), it returns A = 1 (Sunday) to 7 (Saturday). Based on the
concise code/logic designed by Paul Guertin (hosted on 6502.org).
The code computes the day of the week as (day +
offset_table[month] + year + year/4 + adjust) mod 7. The offset
changes the day count so the 1st of the month follows the last day

89

of the previous month. The adjust is -1 after 2099 (as 2100 is not a
leap year). The code begins by starting years in March to make leap
years easier to compute. This is followed immediately by special
handling for January and February in 1990. Later, PT3 computes
(A-4) mod 7 (which is simpler to compute than A mod 7).

$3A Category: 6502
A generator for the solutions to the 8 queens problem. After each
call, if the carry is clear, there is a valid solution in ZP_ADDR_1 to
ZP_ADDR_1+7, where each byte value contains the column position
of a queen that's in a row indexed by the byte's position. For
example, the first solution is $07, $03, $00, $02, $05, $01, $06,
$04. If the carry is set after the call, there are no more solutions
(and the result is not a solution).
Here are the first three solutions found:

1st solution at | 2nd solution at | 3rd solution at

 ~80M cycles | ~96M cycles | ~105M cycles

 7----Q--- | 7---Q---- | 7-----Q--

 6------Q- | 6------Q- | 6---Q----

 5-Q------ | 5----Q--- | 5------Q-

 4-----Q-- | 4-Q------ | 4Q-------

 3--Q----- | 3-----Q-- | 3--Q-----

 2Q------- | 2Q------- | 2----Q---

 1---Q---- | 1--Q----- | 1-Q------

 0-------Q | 0-------Q | 0-------Q

 01234567 | 01234567 | 01234567

Using a non-recursive approach, queens are moved from the right to
the left. Starting with the top row, when a queen finishes moving
through a row, it resets, and the queen below it moves left one
square. This sweeps 8^8 positions, with up to 7*(7+1)/2 = 28
queen pairings to compare per position. For shorter code, one can

90

use the pairwise checks for both column and diagonal collisions
(queens never leave their rows, so row collision checking is
unnecessary). However, in this example, an 8-byte ZP_ADDR_2
structure was added, which quickly detects rook collisions with only
a modest increase in code size. Only after determining that rook
moves don't attack are the more costly pairwise diagonal checks
performed.

$3B Category: 6502
Implementation of Bresenham's Line algorithm (developed in 1962),
frequently used in 8-bit "wire-frame" games. (ADDR_1, ADDR_2) is
the starting (X, Y) point, and (ADDR_3, ADDR_4) is the ending
point. PTA initializes. PTB walks a step; if carry was set, the
endpoint was reached.
Code was adapted from code posted by Petri Häkkinen to add
endpoint checking.

$3C Category: 6502
The 81 bytes of data are compressed with a Lempel-Ziv (LZ77)
variant. This code decompresses that data into 115 bytes, revealing
Bilbo's birthday farewell quip "I DON'T KNOW HALF OF YOU HALF
AS WELL AS I SHOULD LIKE AND I LIKE LESS THAN HALF OF YOU
HALF AS WELL AS YOU DESERVE".
The compressor reads through input data, outputting character
patterns it hasn't seen before (raw byte literals). For byte patterns
found in the previous output, it outputs the offset and length of the
match instead of the literal bytes. Many such LZ-based "crunchers"
exist for 8-bit platforms. These days, the compressing phase of the

91

workload is generally performed on modern machines, which may
then wrap the results with an 8-bit-machine-specific decompressor.
The loop at PT2 outputs uncompressed literals (starting with "I
DON'T KNOW HALF OF YOU") and the PT7 loop outputs referenced
patterns (continuing with " HALF "). There is great variation in the
algorithms that have evolved from LZ77, the 1977 algorithm
designed by Lempel and Ziv. This code example uses TinyCrunch
(v1.2, Christopher Jam, 2018), which minimizes the number of
instructions needed to perform decompression. For size,
TinyCrunch uses illegal opcodes and is two instructions shorter than
what is shown in this example. Specifically, the LDA
(ZP_ADDR16_2),Y / TAX pair is replaced by LAX(ZP_ADDR16_2),Y
($B3), and the SBC #$08 / TAX pair is replaced by SBX #8 ($CB).

$3D Category: 6502
Every byte has had its bit 5 flipped. If you XOR each byte with
%00100000, then you get this runnable program:

 AE 12 80 LDX $8012

 AD 13 80 LDA $8013

 5D EA 7F EOR $7FEA,X

 9D FE 7F STA $7FFE,X

 CA DEX

 E0 15 CPX #$15

 D0 F2 BNE $8003

 60 RTS

 29 20 AND #%00100000

This new program should be stored at $8000 (as the comment
suggests). When executed, the program flips bit 5 of each of its
bytes...

92

8000 AE 12 80 LDX $8012

8003 AD 13 80 LDA $8013

8006 5D EA 7F EOR $7FEA,X

8009 9D FE 7F STA $7FFE,X

800C CA DEX

800D E0 15 CPX #$15

800F D0 F2 BNE $8003

8011 60 RTS

8012 29 20 AND #%00100000

8014 8E 32 A0 STX $A032

8017 8D 33 A0 STA $A033

801A 7D CA 5F ADC $5FCA,X

801D BD DE 5F LDA $5FDE,X

8020 EA NOP

8021 C0 35 CPY #$35

8023 F0 D2 BEQ $7FF7

8025 40 RTI

8026 09 00 ORA #$00

... and then appends the obfuscated code that you started with. :)
This puzzle is similar to a "quine", a term coined by Douglas
Hofstadter (in his 1979 Pulitzer-Prize winning book Gödel, Escher,
Bach: an Eternal Golden Braid) for a program that takes no input and
produces a copy of its own code as output.

$3E Category: 6502
The code takes 14,598,366 cycles to execute, and 14,598,366 in
hexadecimal is "DEC0DE". :)
Cycle counting was an important skill in the commercial Atari 2600
racing-the-beam days, and it's still essential for high-performance or
timing-critical 8-bit coding. This puzzle is perhaps most easily
solved by spreadsheet. If solving by emulator, the SEI is there so
that interrupts don't add more cycles (though other sources of cycle
stealing must be dealt with, such as a C64's VIC-II "bad lines", so
Commodore readers should use a VIC-20 emulator instead).

93

Here's how each line contributes to the sum: 2 + 2 + 2 + 2 +
129030 + 5677320 + 8451465 + 129030 + 193292 + 506 +
506 + 6072 + 8855 + 1012 + 506 + 758 + 6.
The ORG $1000 is to show that no page crossing will occur (which
would complicate cycle counting).

$3F Category: 6502
This program is written using only operators and operands that are
7-bit printable ASCII characters. This greatly limits the available
instructions, values, and viable places in memory to host the code.
Not available: any load, any store, in fact, any instruction that
modifies RAM (including pseudo ops, so no self-modifying code).
Also not available are any transfer instructions, any comparison
instructions, and any ability to modify X or Y register values. The
only branch instructions are BMI, BVC, and BVS, but only forward
branching of 32 to 122. That said, it's possible to JMP anywhere by
constructing values to PHA on the stack, then performing an RTI.
The program writes the string "BOLERO" to the stack. The string is
constructed in an obfuscated way in a loop.

94

The disassembly:

 AND #$40

 AND #$3F

 SEC

 ADC #$41

PT1: PHA

 SEC

 ADC #$7A

 ADC #$70

 ADC #$21

 PHA

 ADC #$7A

 ADC #$61

 ADC #$21

 PHA

 ADC #$32

 BMI PT2

 PLA

 PHA

 ADC #$7A

 ADC #$5D

 ADC #$21

 JMP PT1

95

"when you are a Bear of Very Little Brain, and you Think of
Things, you find sometimes that a Thing which seemed very
Thingish inside you is quite different when it gets out into the
open and has other people looking at it" -- A. A. Milne, The
House at Pooh Corner (1928)

Acknowledgments:

I’m blessed with an assembly-language dream team that edited, bug-
fixed, and in multifold ways made this a better text. My
astonishment and heartfelt gratitude goes out to:
− Kate Greenshields, for graciously reviewing an early draft
− Peter Ferrie, for astute technical feedback, and contributing Apple

II anecdotes
− Michael Steil for sending me (legible) handwritten notes from his

impressive 10-hour-flight playtesting session, and for rounding
out examples with targeted Commodore minutiae

− Robin Harbron for contributing problem $23
− Jim Drew for suggesting problem $11
− And a special thank you to Nate Lawson, not just for his 6502

expertise and recommendations, but for providing much needed
polish to all my prose.

Despite their efforts, there are undoubtedly a few errors still lurking
in the text. When you find one, or more likely, if your OCD is going
nuts because you know some detail that somehow eluded inclusion,
then find me (Google will help) and let me know. I'll gather
feedback at http://youdzone.com/8bit/errata.html

97

Appendix A: Instruction Reference

There are many 6502 instruction references online but usually not
ordered by opcode byte value. This may be useful for evaluating
some of the code examples in this book.

hex| binary | instruction | b | cyc | flags

---|----------|--------------|---|-----|-------------

00 | 00000000 | BRK | 1 | 7 | I

01 | 00000001 | ORA (addr,X) | 2 | 6 | N,Z

05 | 00000101 | ORA zp | 2 | 3 | N,Z

06 | 00000110 | ASL zp | 2 | 5 | N,Z,C

08 | 00001000 | PHP | 1 | 3 |

09 | 00001001 | ORA #imm | 2 | 2 | N,Z

0A | 00001010 | ASL | 1 | 2 | N,Z,C

0D | 00001101 | ORA addr | 3 | 4 | N,Z

0E | 00001110 | ASL addr | 3 | 6 | N,Z,C

10 | 00010000 | BPL rel | 2 | 2-4 |

11 | 00010001 | ORA (addr),Y | 2 | 5-6 | N,Z

15 | 00010101 | ORA zp,X | 2 | 4 | N,Z

16 | 00010110 | ASL zp,X | 2 | 6 | N,Z,C

18 | 00011000 | CLC | 1 | 2 | C

19 | 00011001 | ORA addr,Y | 3 | 4-5 | N,Z

1D | 00011101 | ORA addr,X | 3 | 4-5 | N,Z

1E | 00011110 | ASL addr,X | 3 | 7 | N,Z,C

20 | 00100000 | JSR addr | 3 | 6 |

21 | 00100001 | AND (addr,X) | 2 | 6 | N,Z

24 | 00100100 | BIT zp | 2 | 3 | N,V,Z

25 | 00100101 | AND zp | 2 | 3 | N,Z

26 | 00100110 | ROL zp | 2 | 5 | N,Z,C

28 | 00101000 | PLP | 1 | 4 | N,V,D,I,Z,C

29 | 00101001 | AND #imm | 2 | 2 | N,Z

2A | 00101010 | ROL | 1 | 2 | N,Z,C

2C | 00101100 | BIT addr | 3 | 4 | N,V,Z

2D | 00101101 | AND addr | 3 | 4 | N,Z

2E | 00101110 | ROL addr | 3 | 6 | N,Z,C

30 | 00110000 | BMI rel | 2 | 2-4 |

31 | 00110001 | AND (addr),Y | 2 | 5-6 | N,Z

35 | 00110101 | AND zp,X | 2 | 4 | N,Z

36 | 00110110 | ROL zp,X | 2 | 6 | N,Z,C

38 | 00111000 | SEC | 1 | 2 | C

39 | 00111001 | AND addr,Y | 3 | 4-5 | N,Z

3D | 00111101 | AND addr,X | 3 | 4-5 | N,Z

98

hex| binary | instruction | b | cyc | flags

---|----------|--------------|---|-----|-------------

3E | 00111110 | ROL addr,X | 3 | 7 | N,Z,C

40 | 01000000 | RTI | 1 | 6 | N,V,D,I,Z,C

41 | 01000001 | EOR (addr,X) | 2 | 6 | N,Z

45 | 01000101 | EOR zp | 2 | 3 | N,Z

46 | 01000110 | LSR zp | 2 | 5 | N,Z,C

48 | 01001000 | PHA | 1 | 3 |

49 | 01001001 | EOR #imm | 2 | 2 | N,Z

4A | 01001010 | LSR | 1 | 2 | N,Z,C

4C | 01001100 | JMP addr | 3 | 3 |

4D | 01001101 | EOR addr | 3 | 4 | N,Z

4E | 01001110 | LSR addr | 3 | 6 | N,Z,C

50 | 01010000 | BVC rel | 2 | 2-4 |

51 | 01010001 | EOR (addr),Y | 2 | 5-6 | N,Z

55 | 01010101 | EOR zp,X | 2 | 4 | N,Z

56 | 01010110 | LSR zp,X | 2 | 6 | N,Z,C

58 | 01011000 | CLI | 1 | 2 | I

59 | 01011001 | EOR addr,Y | 3 | 4-5 | N,Z

5D | 01011101 | EOR addr,X | 3 | 4-5 | N,Z

5E | 01011110 | LSR addr,X | 3 | 7 | N,Z,C

60 | 01100000 | RTS | 1 | 6 |

61 | 01100001 | ADC (addr,X) | 2 | 6 | N,V,Z,C

65 | 01100101 | ADC zp | 2 | 3 | N,V,Z,C

66 | 01100110 | ROR zp | 2 | 5 | N,Z,C

68 | 01101000 | PLA | 1 | 4 | N,Z

69 | 01101001 | ADC #imm | 2 | 2 | N,V,Z,C

6A | 01101010 | ROR | 1 | 2 | N,Z,C

6C | 01101100 | JMP (addr) | 3 | 5 |

6D | 01101101 | ADC addr | 3 | 4 | N,V,Z,C

6E | 01101110 | ROR addr | 3 | 6 | N,Z,C

70 | 01110000 | BVS rel | 2 | 2-4 |

71 | 01110001 | ADC (addr),Y | 2 | 5-6 | N,V,Z,C

75 | 01110101 | ADC zp,X | 2 | 4 | N,V,Z,C

76 | 01110110 | ROR zp,X | 2 | 6 | N,Z,C

78 | 01111000 | SEI | 1 | 2 | I

79 | 01111001 | ADC addr,Y | 3 | 4-5 | N,V,Z,C

7D | 01111101 | ADC addr,X | 3 | 4-5 | N,V,Z,C

7E | 01111110 | ROR addr,X | 3 | 7 | N,Z,C

81 | 10000001 | STA (addr,X) | 2 | 6 |

84 | 10000100 | STY zp | 2 | 3 |

85 | 10000101 | STA zp | 2 | 3 |

86 | 10000110 | STX zp | 2 | 3 |

88 | 10001000 | DEY | 1 | 2 | N,Z

8A | 10001010 | TXA | 1 | 2 | N,Z

8C | 10001100 | STY addr | 3 | 4 |

8D | 10001101 | STA addr | 3 | 4 |

8E | 10001110 | STX addr | 3 | 4 |

99

hex| binary | instruction | b | cyc | flags

---|----------|--------------|---|-----|-------------

90 | 10010000 | BCC rel | 2 | 2-4 |

91 | 10010001 | STA (addr),Y | 2 | 6 |

94 | 10010100 | STY zp,X | 2 | 4 |

95 | 10010101 | STA zp,X | 2 | 4 |

96 | 10010110 | STX zp,Y | 2 | 4 |

98 | 10011000 | TYA | 1 | 2 | N,Z

99 | 10011001 | STA addr,Y | 3 | 5 |

9A | 10011010 | TXS | 1 | 2 |

9D | 10011101 | STA addr,X | 3 | 5 |

A0 | 10100000 | LDY #imm | 2 | 2 | N,Z

A1 | 10100001 | LDA (addr,X) | 2 | 6 | N,Z

A2 | 10100010 | LDX #imm | 2 | 2 | N,Z

A4 | 10100100 | LDY zp | 2 | 3 | N,Z

A5 | 10100101 | LDA zp | 2 | 3 | N,Z

A6 | 10100110 | LDX zp | 2 | 3 | N,Z

A8 | 10101000 | TAY | 1 | 2 | N,Z

A9 | 10101001 | LDA #imm | 2 | 2 | N,Z

AA | 10101010 | TAX | 1 | 2 | N,Z

AC | 10101100 | LDY addr | 3 | 4 | N,Z

AD | 10101101 | LDA addr | 3 | 4 | N,Z

AE | 10101110 | LDX addr | 3 | 4 | N,Z

B0 | 10110000 | BCS rel | 2 | 2-4 |

B1 | 10110001 | LDA (addr),Y | 2 | 5-6 | N,Z

B4 | 10110100 | LDY zp,X | 2 | 4 | N,Z

B5 | 10110101 | LDA zp,X | 2 | 4 | N,Z

B6 | 10110110 | LDX zp,Y | 2 | 4 | N,Z

B8 | 10111000 | CLV | 1 | 2 | V

B9 | 10111001 | LDA addr,Y | 3 | 4-5 | N,Z

BA | 10111010 | TSX | 1 | 2 | N,Z

BC | 10111100 | LDY addr,X | 3 | 4-5 | N,Z

BD | 10111101 | LDA addr,X | 3 | 4-5 | N,Z

BE | 10111110 | LDX addr,Y | 3 | 4-5 | N,Z

C0 | 11000000 | CPY #imm | 2 | 2 | N,Z,C

C1 | 11000001 | CMP (addr,X) | 2 | 6 | N,Z,C

C4 | 11000100 | CPY zp | 2 | 3 | N,Z,C

C5 | 11000101 | CMP zp | 2 | 3 | N,Z,C

C6 | 11000110 | DEC zp | 2 | 5 | N,Z

C8 | 11001000 | INY | 1 | 2 | N,Z

C9 | 11001001 | CMP #imm | 2 | 2 | N,Z,C

CA | 11001010 | DEX | 1 | 2 | N,Z

CC | 11001100 | CPY addr | 3 | 4 | N,Z,C

CD | 11001101 | CMP addr | 3 | 4 | N,Z,C

CE | 11001110 | DEC addr | 3 | 6 | N,Z

D0 | 11010000 | BNE rel | 2 | 2-4 |

D1 | 11010001 | CMP (addr),Y | 2 | 5-6 | N,Z,C

D5 | 11010101 | CMP zp,X | 2 | 4 | N,Z,C

100

hex| binary | instruction | b | cyc | flags

---|----------|--------------|---|-----|-------------

D6 | 11010110 | DEC zp,X | 2 | 6 | N,Z

D8 | 11011000 | CLD | 1 | 2 | D

D9 | 11011001 | CMP addr,Y | 3 | 4-5 | N,Z,C

DD | 11011101 | CMP addr,X | 3 | 4-5 | N,Z,C

DE | 11011110 | DEC addr,X | 3 | 7 | N,Z

E0 | 11100000 | CPX #imm | 2 | 2 | N,Z,C

E1 | 11100001 | SBC (addr,X) | 2 | 6 | N,V,Z,C

E4 | 11100100 | CPX zp | 2 | 3 | N,Z,C

E5 | 11100101 | SBC zp | 2 | 3 | N,V,Z,C

E6 | 11100110 | INC zp | 2 | 5 | N,Z

E8 | 11101000 | INX | 1 | 2 | N,Z

E9 | 11101001 | SBC #imm | 2 | 2 | N,V,Z,C

EA | 11101010 | NOP | 1 | 2 |

EC | 11101100 | CPX addr | 3 | 4 | N,Z,C

ED | 11101101 | SBC addr | 3 | 4 | N,V,Z,C

EE | 11101110 | INC addr | 3 | 6 | N,Z

F0 | 11110000 | BEQ rel | 2 | 2-4 |

F1 | 11110001 | SBC (addr),Y | 2 | 5-6 | N,V,Z,C

F5 | 11110101 | SBC zp,X | 2 | 4 | N,V,Z,C

F6 | 11110110 | INC zp,X | 2 | 6 | N,Z

F8 | 11111000 | SED | 1 | 2 | D

F9 | 11111001 | SBC addr,Y | 3 | 4-5 | N,V,Z,C

FD | 11111101 | SBC addr,X | 3 | 4-5 | N,V,Z,C

FE | 11111110 | INC addr,X | 3 | 7 | N,Z

101

Appendix B: Further Reading

xorpd. 2014. xchg rax,rax. North Charleston, SC: Createspace

Independent Publishing Platform.

Warren, Henry S. 2012. Hacker’s Delight. 2nd ed. Boston, MA:
Addison-Wesley Educational.

groepaz. 2022. NMOS 6510 Unintended Opcodes. Version 0.97.
https://csdb.dk/getinternalfile.php/239398/NoMoreSecrets-
NMOS6510UnintendedOpcodes-20222412.pdf

Butterfield, Jim. 1984. Machine Language for the Commodore 64 and
Other Commodore Computers. Bowie, MD: Brady
Communications Company, Inc.

Wagner, Roger. 2014. Assembly Lines: The Complete Book.
Morrisville, NC: Lulu.com.

Toledo Gutierrez, Oscar. 2022. Programming Games for Atari 2600.
Morrisville, NC: Lulu.com.

Colophon

Book text was rendered in Charis SIL, a transitional serif typeface
developed by SIL International and licensed under the SIL Open
Font License (OFL).
Code segments were rendered in Liberation Mono, part of the
Liberation font family originally developed by Ascender
Corporation. As of December 2018 it is licensed under OFL.
Cover text rendered in Merriweather, designed by Eben Sorkin, and
is also licensed under OFL.

My intent is to earn $0 from this book. The e-book should be free,
and the paperback should be as near to printing costs as possible.
Any unavoidable earnings will be donated to the Sempervirens
Fund, a land trust set up to preserve coast redwoods in California's
Santa Cruz Mountains.

