
Instruction Set Details
Nomenclature

The following nomenclature is used in the subsequent definitions.

1. Operators:
() = Contents of register shown inside parentheses
⇐ = Is transferred to
⇑ = Is pulled from stack
⇓ = Is pushed onto stack
• = Boolean AND
+ = Arithmetic addition symbol except where used as

inclusive-OR symbol in Boolean formula
⊕ = Exclusive OR
× = Multiply
: = Concatenation
− = Arithmetic subtraction symbol or negation symbol

(twos complement)

2. Registers in the CPU:
ACCA = Accumulator A
ACCB = Accumulator B
ACCX = Accumulator ACCA or ACCB
ACCD = Double accumulator — Accumulator A concatenated

with accumulator B where A is the most significant
byte

CCR = Condition code register
IX = Index register X, 16 bits
IXH = Index register X, high order 8 bits
IXL = Index register X, low order 8 bits
PC = Program counter, 16 bits
PCH = Program counter, high order (most significant) 8 bits
PC = Program counter, low order (least significant) 8 bits
SP = Stack pointer, 16 bits
SPH = Stack pointer, high order 8 bits
SPL = Stack pointer, low order 8 bits

3. Memory and addressing:
M = A memory location (one byte)
M+1 = The byte of memory at $0001 plus the address of the

memory location indicated by “M”
Rel = Relative offset (that is, the twos complement number

stored in the last byte of machine code correspond-
ing to a branch instruction)

(opr) = Operand
(msk) = Mask used in bit manipulation instructions
(rel) = Relative offset used in branch instructions

4. Bits [7:0] of the condition code register:
S = Stop disable, bit 7
X = X interrupt mask, bit 6
H = Half carry, bit 5
I = I interrupt mask, bit 4
N = Negative indicator, bit 3
Z = Zero indicator, bit 2
V = Two’s complement overflow indicator, bit 1
C = Carry/borrow, bit 0

5. Status of individual bit before execution of an instruction:
An = Bit n of ACCA (n = 7, 6, 5... 0)
Bn = Bit n of ACCB (n = 7, 6, 5... 0)
Dn = Bit n of ACCD (n = 15, 14, 13... 0) where bits [15:8]

refer to ACCA and bits [7:0] refer to ACCB
IXn = Bit n of IX (n = 15, 14, 13... 0)
IXHn = Bit n of IXH (n = 7, 6, 5... 0)
IXLn = Bit n of IXL (n = 7, 6, 5... 0)
IYn = Bit n of IY (n = 15, 14, 13... 0)
IYHn = Bit n of IYH (n = 7, 6, 5... 0)
IYLn = Bit n of IYL (n = 7, 6, 5... 0)
Mn = Bit n of M (n = 7, 6, 5... 0)
SPHn = Bit n of SPH (n = 7, 6, 5... 0)
SPLn = Bit n of SPL (n = 7, 6, 5... 0)
Xn = Bit n of ACCX (n = 7, 6, 5... 0)

Instruction Set Details
6. Status of individual bits of result of execution of an instruction:

For 8-bit results:

Rn = Bit n of the result (n = 7, 6, 5... 0). This applies to in-
structions which provide a result contained in a single
byte of memory or in an 8-bit register.

For 16-bit results:

RHn = Bit n of the most significant byte of the result
(n = 7, 6, 5... 0)

RLn = Bit n of the least significant byte of the result
(n = 7, 6, 5... 0). This applies to instructions which
provide a result contained in two consecutive bytes
of memory or in a 16-bit register.

Rn = Bit n of the result (n = 15, 14, 13... 0)

7. Notation used in CCR activity summary figures:
— = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
Ù = Bit set or cleared according to results of operation
⇓ = Bit may change from 1 to 0, remain 0, or remain 1

as a result of this operation, but cannot change from
0 to 1.

8. Notation used in cycle-by-cycle execution tables:
— = Irrelevant data
ii = One byte of immediate data
jj = High-order byte of 16-bit immediate data
kk = Low-order byte of 16-bit immediate data
hh = High-order byte of 16-bit extended address
ll = Low-order byte of 16-bit extended address
dd = Low-order eight bits of direct address $0000–$00FF

(high byte assumed to be $00)
mm = 8-bit mask (set bits correspond to operand bits which

will be affected)
ff = 8-bit forward offset $00 (0) to $FF (255) (is added to

index)

rr = Signed relative offset $80 (–128) to $7F (+127)
(offset relative to address following machine code
offset byte)

OP = Address of opcode byte

OP+n = Address of nth location after opcode byte
SP = Address pointed to by stack pointer value (at the start

of an instruction)

SP+n = Address of nth higher address past that pointed to by
stack pointer

SP–n = Address of nth lower address before that pointed to
by stack pointer

Sub = Address of called subroutine
Nxt op = Opcode of next instruction
Rtn hi = High-order byte of return address
Rtn lo = Low-order byte of return address
Svc hi = High-order byte of address for service routine
Svc lo = Low-order byte of address for service routine
Vec hi = High-order byte of interrupt vector
Vec lo = Low-order byte of interrupt vector

M6803 Instruction Set

The instructions are arranged in alphabetical order with the instruction
mnemonic set in larger type for easy reference.

Instruction Set Details
ABA Add Accumulator B to Accumulator A ABA
Operation: ACCA ⇐ (ACCA) + (ACCB)

Description: Adds the contents of accumulator B to the contents of accumulator A and
places the result in accumulator A. Accumulator B is not changed. This
instruction affects the H condition code bit so it is suitable for use in BCD
arithmetic operations (see DAA instruction for additional information).

Condition Codes
and Boolean

Formulae:

H A3 • B3 + B3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V A7 • B7 • R7 + A7 • B7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C A7 • B7 + B7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form: ABA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — Ù — Ù Ù Ù Ù

Cycle
ABA (INH)

Addr Data R/W

1 OP 1B 1

2 OP + 1 — 1

ABX Add Accumulator B to Index Register X ABX
Operation: IX ⇐ (IX) + (ACCB)

Description: Adds the 8-bit unsigned contents of accumulator B to the contents of
index register X (IX) considering the possible carry out of the low-order
byte of the index register X; places the result in index register X (IX).
Accumulator B is not changed. There is no equivalent instruction to add
accumulator A to an index register.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: ABX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
ABX (INH)

Addr Data R/W

1 OP 3A 1

2 OP + 1 — 1

3 FFFF — 1

ADC Add with Carry ADC
Operation: ACCX ⇐ (ACCX) + (M) + (C)

Description: Adds the contents of the C bit to the sum of the contents of ACCX and
M and places the result in ACCX. This instruction affects the H condition
code bit so it is suitable for use in BCD arithmetic operations (see DAA
instruction for additional information).

Condition Codes
and Boolean

Formulae:

H X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms: ADCA (opr); ADCB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — Ù — Ù Ù Ù Ù

Cycle
ADCA (IMM) ADCA (DIR) ADCA (EXT) ADCA (IND,X) ADCA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 89 1 OP 99 1 OP B9 1 OP A9 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A9 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X+ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
ADCB (IMM) ADCB (DIR) ADCB (EXT) ADCB (IND,X) ADCB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C9 1 OP D9 1 OP F9 1 OP E9 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E9 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Instruction Set Details
ADD Add without Carry ADD
Operation: ACCX ⇐ (ACCX) + (M)

Description: Adds the contents of M to the contents of ACCX and places the result in
ACCX. This instruction affects the H condition code bit so it is suitable
for use in BCD arithmetic operations (see DAA instruction for additional
information).

Condition Codes
and Boolean

Formulae:

H X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms: ADDA (opr); ADDB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — Ù — Ù Ù Ù Ù

Cycle
ADCA (IMM) ADCA (DIR) ADCA (EXT) ADCA (IND,X) ADCA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8B 1 OP 9B 1 OP BB 1 OP AB 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AB 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
ADDB (IMM) ADDB (DIR) ADDB (EXT) ADDB (IND,X) ADDB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CB 1 OP DB 1 OP FB 1 OP EB 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EB 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

ADDD Add Double Accumulator ADDD
Operation: ACCD ⇐ (ACCD) + (M : M + 1)

Description: Adds the contents of M concatenated with M + 1 to the contents of ACCD
and places the result in ACCD. Accumulator A corresponds to the
high-order half of the 16-bit double accumulator D.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D15 • M15 • R15 + D15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C D15 • M15 + M15 • R15 + R15 • D15
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form: ADDD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
ADDD (IMM) ADDD (DIR) ADDD (EXT) ADDD (IND,X) ADDD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP C3 1 OP D3 1 OP F3 1 OP E3 1 OP 18 1

2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E3 1

3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1

6 FFFF — 1 FFFF — 1 Y + ff + 1 (Y + ff + 1) 1

7 FFFF — 1

Instruction Set Details
AND Logical AND AND
Operation: ACCX ⇐ (ACCX) • (M)

Description: Performs the logical AND between the contents of ACCX and the
contents of M and places the result in ACCX. (Each bit of ACCX after the
operation will be the logical AND of the corresponding bits of M and of
ACCX before the operation.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: ANDA (opr); ANDB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
ADCA (IMM) ADCA (DIR) ADCA (EXT) ADCA (IND,X) ADCA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 84 1 OP 94 1 OP B4 1 OP A4 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A4 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1

Cycle
ANDB (IMM) ANDB (DIR) ANDB (EXT) ANDB (IND,X) ANDB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP C4 1 OP D4 1 OP F4 1 OP E4 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E4 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1

ASL Arithmetic Shift Left ASL
(Same as LSL)

Operation:

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of ACCX
or M.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C M7
Set if, before the shift, the MSB of ACCX or M was set; cleared
otherwise.

Source Forms: ASLA; ASLB; ASL (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 0

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
ASLA (IMM) ASLB (DIR) ASL (EXT) ASL (IND,X) ASL (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 48 1 OP 58 1 OP 78 1 OP 68 1 OP 18 1

2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 68 1

3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1

6 hhll result 0 X + ff result 0 FFFF — 1

7 Y + ff result 0

Instruction Set Details
ASLD Arithmetic Shift Left Double Accumulator ASLD
(Same as LSLD)

Operation:

Description: Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a 0. The
C bit in the CCR is loaded from the most significant bit of ACCD.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C D15
Set if, before the shift, the MSB of ACCD was set; cleared otherwise.

Source Form: ASLD

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 b7 – – – – – – b0 0

ACCA ACCB

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
ASLD (INH)

Addr Data R/W

1 OP 05 1

2 OP + 1 — 1

3 FFFF — 1

ASR Arithmetic Shift Right ASR
Operation:

Description: Shifts all bits of the ACCX or M one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C bit of the CCR. This operation
effectively divides a twos complement value by two without changing its
sign. The carry bit can be used to round the result.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C M0
Set if, before the shift, the LSB of ACCX or M was set; cleared
otherwise.

Source Forms: ASRA; ASRB; ASR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cb7 – – – – – – b0

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
ASRA (IMM) ASRB (DIR) ASR (EXT) ASR (IND,X) ASR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 47 1 OP 57 1 OP 77 1 OP 67 1 OP 18 1

2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 67 1

3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1

6 hhll result 0 X + ff result 0 FFFF — 1

7 Y + ff result 0

Instruction Set Details
BCC Branch if Carry Clear BCC
(Same as BHS)

Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 0

Description: Tests the state of the C bit in the CCR and causes a branch if C is clear.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BCC (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BCC (REL)

Addr Data R/W

1 OP 24 1

2 OP + 1 rr 1

3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BCS Branch if Carry Set BCS
(Same as BLO)

Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 1

Description: Tests the state of the C bit in the CCR and causes a branch if C is set.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BCS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BCS (REL)

Addr Data R/W

1 OP 25 1

2 OP + 1 rr 1

3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional

BEQ Branch if Equal BEQ
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) = 1

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is set.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BEQ (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BEQ (REL)

Addr Data R/W

1 OP 27 1

2 OP + 1 rr 1

3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BGE Branch if Greater than or Equal to Zero BGE
Operation: PC ⇐ (PC) + $0002 + Rel if (N) ⊕ (V) = 0

i.e., if (ACCX) ≥ (M) (twos-complement signed numbers)

Description: If the BGE instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the twos complement number
represented by ACCX was greater than or equal to the twos complement
number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BGE (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BGE (REL)

Addr Data R/W
1 OP 2C 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

BGT Branch if Greater than Zero BGT
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) + [(N) ⊕ (V)] = 0

i.e., if (ACCX) > (M) (twos-complement signed numbers)

Description: If the BGT instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the twos complement number
represented by ACCX was greater than the twos complement number
represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BGT (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BGT (REL)

Addr Data R/W
1 OP 2E 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BHI Branch if Higher BHI
Operation: PC ⇐ (PC) + $0002 + Rel if (C) + (Z) = 0

i.e., if (ACCX) > (M) (unsigned binary numbers)

Description: If the BHI instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was greater than unsigned binary number
represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BHI (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BHI (REL)

Addr Data R/W
1 OP 22 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

BHS Branch if Higher or Same (Same as BCC) BHS
Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 0

i.e., if (ACCX) ≥ (M) (unsigned binary numbers)

Description: If the BHS instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was greater than or equal to the unsigned binary
number represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BHS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BHS (REL)

Addr Data R/W
1 OP 24 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BIT Bit Test BIT
Operation: (ACCX) • (M)

Description: Performs the logical AND between the contents of ACCX and the
contents of M and modifies the condition codes accordingly. Neither the
contents of ACCX nor M operands are affected. (Each bit of the result of
the AND would be the logical AND of the corresponding bits of ACCX
and M.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: BITA (opr); BITB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
BITA (IMM) BITA (DIR) BITA (EXT) BITA (IND,X) BITA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 85 1 OP 95 1 OP B5 1 OP A5 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AS 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1

Cycle
BITB (IMM) BITB (DIR) BITB (EXT) BITB (IND,X) BITB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP C5 1 OP D5 1 OP F5 1 OP E5 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 ES 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1

BLE Branch if Less than or Equal to Zero BLE
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) + [(N) ⊕ (V)] = 1

i.e., if (ACCX) ≤ (M) (twos complement signed numbers)

Description: If the BLE instruction is executed immediately after execution of any of
the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B, or
D), the branch will occur if and only if the twos complement signed
number represented by ACCX was less than or equal to the twos
complement signed number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BLE (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BLE (REL)

Addr Data R/W
1 OP 2F 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BLO Branch if Lower (Same as BCS) BLO
Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 1

i.e., if (ACCX) < (M) (unsigned binary numbers)

Description: If the BLO instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was less than the unsigned binary number
represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BLO (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BLO (REL)

Addr Data R/W
1 OP 25 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

BLS Branch if Lower or Same BLS
Operation: PC ⇐ (PC) + $0002 + Rel if (C) + (Z) = 1

i.e., if (ACCX) ≤ (M) (unsigned binary numbers)

Description: If the BLS instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was less than or equal to the unsigned binary
number represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BLS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BLS (REL)

Addr Data R/W
1 OP 23 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BLT Branch if Less than Zero BLT
Operation: PC ⇐ (PC) + $0002 + Rel if (N) ⊕ (V)= 1

i.e., if (ACCX) < (M) (twos complement signed numbers)

Description: If the BLT instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the twos-complement number
represented by ACCX was less than the twos-complement number
represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BLT (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BLT (REL)

Addr Data R/W
1 OP 2D 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

BMI Branch if Minus BMI
Operation: PC ⇐ (PC) + $0002 + Rel if (N) = 1

Description: Tests the state of the N bit in the CCR and causes a branch if N is set.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BMI (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BMI (REL)

Addr Data R/W
1 OP 2B 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BNE Branch if Not Equal to Zero BNE
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) = 0

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is clear.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BNE (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BNE (REL)

Addr Data R/W
1 OP 26 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional

BPL Branch if Plus BPL
Operation: PC ⇐ (PC) + $0002 + Rel if (N) = 0

Description: Tests the state of the N bit in the CCR and causes a branch if N is clear.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BPL (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BPL (REL)

Addr Data R/W
1 OP 2A 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BRA Branch Always BRA
Operation: PC ⇐ (PC) + $0002 + Rel

Description: Unconditional branch to the address given by the foregoing formula, in
which Rel is the relative offset stored as a twos-complement number in
the second byte of machine code corresponding to the branch
instruction.

The source program specifies the destination of any branch instruction
by its absolute address, either as a numerical value or as a symbol or
expression, that can be numerically evaluated by the assembler. The
assembler obtains the relative address, Rel, from the absolute address
and the current value of the location counter.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BRA (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BRA (REL)

Addr Data R/W
1 OP 20 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
BRN Branch Never BRN
Operation: PC ⇐ (PC) + $0002

Description: Never branches. In effect, this instruction can be considered as a 2-byte
NOP (no operation) requiring three cycles for execution. Its inclusion in
the instruction set is to provide a complement for the BRA instruction.
This instruction is useful during program debug to negate the effect of
another branch instruction without disturbing the offset byte. Having a
complement for BRA is also useful in compiler implementations.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BRN (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BRN (REL)

Addr Data R/W
1 OP 21 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

BSR Branch to Subroutine BSR
Operation: PC ⇐ (PC) + $0002 Advance PC to return address

⇓ (PCL) Push low-order return onto stack
SP ⇐ (SP) – $0001
⇓ (PCH) Push high-order return onto stack
SP ⇐ (SP) – $0001
PC ⇐ (PC) + Rel Load start address of requested subroutine

Description: The program counter is incremented by two (this will be the return
address). The least significant byte of the contents of the program
counter (low-order return address) is pushed onto the stack. The stack
pointer is then decremented by one. The most significant byte of the
contents of the program counter (high-order return address) is pushed
onto the stack. The stack pointer is then decremented by one. A branch
then occurs to the location specified by the branch offset.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BSR (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
BSR (REL)

Addr Data R/W
1 OP 8D 1
2 OP + 1 rr 1
3 FFFF — 1
4 Sub Nxt op 1
5 SP Rtn lo 0
6 SP–1 Rtn hi 0

Instruction Set Details
BVC Branch if Overflow Clear BVC
Operation: PC ⇐ (PC) + $0002 + Rel if (V) = 0

Description: Tests the state of the V bit in the CCR and causes a branch if V is clear.
Used after an operation on twos-complement binary values, this
instruction will cause a branch if there was NO overflow. That is, branch
if the twos-complement result was valid.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BVC (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BVC (REL)

Addr Data R/W
1 OP 28 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

BVS Branch if Overflow Set BVS
Operation: PC ⇐ (PC) + $0002 + Rel if (V) = 1

Description: Tests the state of the V bit in the CCR and causes a branch if V is set.
Used after an operation on twos-complement binary values, this
instruction will cause a branch if there was an overflow. That is, branch
if the twos-complement result was invalid.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BVS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BVS (REL)

Addr Data R/W
1 OP 29 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional

Instruction Set Details
CBA Compare Accumulators CBA
Operation: (ACCA) – (ACCB)

Description: Compares the contents of ACCA to the contents of ACCB and sets the
condition codes, which may be used for arithmetic and logical
conditional branches. Both operands are unaffected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V A7 • B7 • R7 + A7 • B7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C A7 • B7 + B7 • R7 + R7 • A7
Set if there was a borrow from the MSB of the result; cleared
otherwise.

Source Form: CBA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
CBA (INH)

Addr Data R/W
1 OP 11 1
2 OP + 1 — 1

CLC Clear Carry CLC
Operation: C bit ⇐ 0

Description: Clears the C bit in the CCR.

CLC may be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

Condition Codes
and Boolean

Formulae:

C 0
Cleared

Source Form: CLC

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — 0

Cycle
CLC (INH)

Addr Data R/W
1 OP 0C 1
2 OP + 1 — 1

Instruction Set Details
CLI Clear Interrupt Mask CLI
Operation: I bit ⇐ 0

Description: Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. There is one E-clock cycle delay in the clearing
mechanism for the I bit so that, if interrupts were previously disabled, the
next instruction after a CLI will always be executed, even if there was an
interrupt pending prior to execution of the CLI instruction.

Condition Codes
and Boolean

Formulae:

I 0
Cleared

Source Form: CLI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — 0 — — — —

Cycle
CLI (INH)

Addr Data R/W
1 OP 0E 1
2 OP + 1 — 1

CLR Clear CLR
Operation: ACCX ⇐ 0 or: M ⇐ 0

Description: The contents of ACCX or M are replaced with 0s.

Condition Codes
and Boolean

Formulae:

N 0
Cleared

Z 1
Set

V 0
Cleared

C 0
Cleared

Source Forms: CLRA; CLRB; CLR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — 0 1 0 0

Cycle
CLRA (IMM) CLRB (DIR) CLR (EXT) CLR (IND,X) CLR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 4F 1 OP 5F 1 OP 7F 1 OP 6F 1 OP 18 1

2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6F 1

3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1

6 hhll 00 0 X + ff 00 0 FFFF — 1

7 Y + ff 00 0

Instruction Set Details
CLV Clear Twos Complement Overflow Bit CLV
Operation: V bit ⇐ 0

Description: Clears the twos complement overflow bit in the CCR

Condition Codes
and Boolean

Formulae:

V 0
Cleared

Source Form: CLV

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — 0 —

Cycle
CLV (INH)

Addr Data R/W
1 OP 0A 1
2 OP + 1 — 1

CMP Compare CMP
Operation: (ACCX) – (M)

Description: Compares the contents of ACCX to the contents of M and sets the
condition codes, which may be used for arithmetic and logical
conditional branching. Both operands are unaffected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if there was a borrow from the MSB of the result; cleared
otherwise.

Source Forms: CMPA (opr); CMPB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
CMPA (IMM) CMPA (DIR) CMPA (EXT) CMPA (IND,X) CMPA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 81 1 OP 91 1 OP B1 1 OP A1 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A1 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
CMPB (IMM) CMPB (DIR) CMPB (EXT) CMPB (IND,X) CMPB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C1 1 OP D1 1 OP F1 1 OP E1 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E1 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Instruction Set Details
COM Complement COM
Operation: ACCX ⇐ (ACCX) = $FF – (ACCX) or: M ⇐ (M) = $FF – (M)

Description: Replaces the contents of ACCX or M with its one’s complement. (Each
bit of the contents of ACCX or M is replaced with the complement of that
bit.) To complement a value without affecting the C bit, EXclusive-OR
the value with $FF.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

C 1
Set (For compatibility with M6800)

Source Forms: COMA; COMB; COM (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 1

Cycle
COMA (INH) COMB (INH) COM (EXT) COM (IND,X) COM (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 43 1 OP 53 1 OP 73 1 OP 63 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 63 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

Instruction Set Details
CPX Compare Index Register X CPX
Operation: (IX) – (M : M + 1)

Description: Compares the contents of index register X with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by doing a 16-bit subtract of
(M : M + 1) from index register X without modifying either index register
X or (M : M + 1).

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V IX15 • M15 • R15 + IX15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C IX15 • M15 + M15 • R15 + R15 • IX15
Set if the absolute value of the contents of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Form: CPX (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
CPX (IMM) CPX (DIR) CPX (EXT) CPX (IND,X) CPX (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8C 1 OP 9C 1 OP BC 1 OP AC 1 OP CD 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AC 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 FFFF — 1 FFFF — 1 Y + ff + 1 (Y + ff + 1) 1
7 FFFF — 1

Instruction Set Details
DAA Decimal Adjust Accumulator A DAA
Operation: The following table summarizes the operation of the DAA instruction for

all legal combinations of input operands. A correction factor (column 5 in
the following table) is added to ACCA to restore the result of an addition
of two BCD operands to a valid BCD value and set or clear the carry bit.

NOTE: Columns (1) through (4) of the above table represent all possible cases
which can result from any of the operations ABA, ADD, or ADC, with
initial carry either set or clear, applied to two binary-coded-decimal
operands. The table shows hexadecimal values.

Description: If the contents of ACCA and the state of the carry/borrow bit C and the
state of the half-carry bit H are all the result of applying any of the
operations ABA, ADD, or ADC to binary-coded-decimal operands, with
or without an initial carry, the DAA operation will adjust the contents of
ACCA and the carry bit C in the CCR to represent the correct
binary-coded-decimal sum and the correct state of the C bit.

State of C Bit
Before DAA
(Column 1)

Upper Half-Byte
of ACCA

(Bits [7:4])
(Column 2)

Initial Half-Carry
H Bit

from CCR
(Column 3)

Lower Half-Byte
of ACCA

(Bits [3:0])
(Column 4)

Number Added
to ACCA
by DAA

(Column 5)

State of C Bit
After DAA
(Column 6)

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

DAA Decimal Adjust Accumulator A DAA
(Continued)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V ?
Not defined

C See table above

Source Form: DAA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

For the purpose of illustration, consider the case where the BCD value
$99 was just added to the BCD value $22. The add instruction is a binary
operation, which yields the result $BB with no carry (C) or half carry (H).
This corresponds to the fifth row of the table on the previous page. The
DAA instruction, therefore, will add the correction factor $66 to the result
of the addition, giving a result of $21 with the carry bit set. This result
corresponds to the BCD value $121, which is the expected BCD result.

S X H I N Z V C

— — — — Ù Ù ? Ù

Cycle
DAA (INH)

Addr Data R/W
1 OP 19 1
2 OP + 1 — 1

Instruction Set Details
DEC Decrement DEC
Operation: ACCX ⇐ (ACCX) – $01 or: M ⇐ (M) – $01

Description: Subtract one from the contents of ACCX or M.

The N, Z, and V bits in the CCR are set or cleared according to the
results of the operation. The C bit in the CCR is not affected by the
operation, thus allowing the DEC instruction to be used as a loop counter
in multiple-precision computations.

When operating on unsigned values, only BEQ and BNE branches can
be expected to perform consistently. When operating on twos
complement values, all signed branches are available.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0 = R7 • R6 • R5 • R4 • R3 • R2 •
R1 • R0
Set if a twos complement overflow resulted from the operation;
cleared otherwise. Twos complement overflow occurs if and only if
(ACCX) or (M) was $80 before the operation.

Source Form: DECA; DECB; DEC (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù —

Cycle
DECA (INH) DECB (INH) DEC (EXT) DEC (IND,X) DEC (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 4A 1 OP 5A 1 OP 7A 1 OP 6A 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6A 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 1

DES Decrement Stack Pointer DES
Operation: SP ⇐ (SP) – $0001

Description: Subtract one from the stack pointer.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: DES

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
DES (INH)

Addr Data R/W
1 OP 34 1
2 OP + 1 — 1
3 SP — 1

Instruction Set Details
DEX Decrement Index Register X DEX
Operation: IX ⇐ (IX) – $0001

Description: Subtract one from index register X

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

Source Form: DEX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ù — —

Cycle
DEX (INH)

Addr Data R/W
1 OP 09 1
2 OP + 1 — 1
3 FFFF — 1

Instruction Set Details
EOR Exclusive OR EOR
Operation: ACCX ⇐ (ACCX) ⊕ (M)

Description: Performs the logical exclusive-OR between the contents of ACCX and
the contents of M and places the result in ACCX. (Each bit of ACCX after
the operation will be the logical exclusive-OR of the corresponding bits
of M and ACCX before the operation.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: EORA (opr); EORB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
EORA (IMM) EORA (DIR) EORA (EXT) EORA (IND,X) EORA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 88 1 OP 98 1 OP B8 1 OP A8 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A8 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
EORB (IMM) EORB (DIR) EORB (EXT) EORB (IND,X) EORB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C8 1 OP D8 1 OP F8 1 OP E8 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E8 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

INC Increment INC
Operation: ACCX ⇐ (ACCX) + $01 or: M ⇐ (M) + $01

Description: Add one to the contents of ACCX or M.

The N, Z, and V bits in the CCR are set or cleared according to the
results of the operation. The C bit in the CCR is not affected by the
operation, thus allowing the INC instruction to be used as a loop counter
in multiple-precision computations.

When operating on unsigned values, only BEQ and BNE branches can
be expected to perform consistently. When operating on
twos-complement values, all signed branches are available.

Condition Codes
and Boolean

Formulae:

N R7
Set is MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0
Set if there is a twos complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (ACCX) or (M) was $7F before the operation.

Source Forms: INCA; INCB; INC (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù —

Cycle
INCA (INH) INCB (INH) INC (EXT) INC (IND,X) INC (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 4C 1 OP 5C 1 OP 7C 1 OP 6C 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6C 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

Instruction Set Details
INS Increment Stack Pointer INS
Operation: SP ⇐ (SP) + $0001

Description: Adds one to the stack pointer

Condition Codes
and Boolean

Formulae:

None affected

Source Form: INS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
INS (INH)

Addr Data R/W
1 OP 31 1
2 OP + 1 — 1
3 SP — 1

INX Increment Index Register X INX
Operation: IX ⇐ (IX) + $0001

Description: Adds one to index register X

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

Source Form: INX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ù — —

Cycle
INX (INH)

Addr Data R/W
1 OP 08 1
2 OP + 1 — 1
3 FFFF — 1

JMP Jump JMP
Operation: PC ⇐ Effective Address

Description: A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for EXTended or
INDexed addressing.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: JMP (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
JMP (EXT) JMP (IND,X) JMP (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 7E 1 OP 6E 1 OP 18 1
2 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6E 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 FFFF — 1

Instruction Set Details
JSR Jump to Subroutine JSR
Operation: PC ⇐ (PC) + $0003 (for EXTended or INDexed, Y addressing)

or:
PC ⇐ (PC) + $0002 (for DIRect or INDexed, X addressing)
⇓ (PCL) Push low-order return address onto stack
SP ⇐ (SP) – $0001
⇓ (PCH) Push high-order return address onto stack
SP ⇐ (SP) – $0001
PC ⇐ Effective Addr Load start address or requested subroutine

Description: The program counter is incremented by three or by two, depending on
the addressing mode, and is then pushed onto the stack, eight bits at a
time, least significant byte first. The stack pointer points to the next
empty location in the stack. A jump occurs to the instruction stored at the
effective address. The effective address is obtained according to the
rules for EXTended, DIRect, or INDexed addressing.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: JSR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
JSR (DIR) JSR (EXT) JSR (IND,X) JSR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 9D 1 OP BD 1 OP AD 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AD 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 SP Rtn lo 0 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 SP – 1 Rtn hi 0 SP Rtn lo 0 SP Rtn lo 0 Y + ff (Y + ff) 1
6 SP – 1 Rtn hi 0 SP – 1 Rtn hi 0 SP Rtn lo 0
7 SP – 1 Rtn hi 0

LDA Load Accumulator LDA
Operation: ACCX ⇐ (M)

Description: Loads the contents of memory into the 8-bit accumulator. The condition
codes are set according to the data.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: LDAA (opr); LDAB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
LDAA (IMM) LDAA (DIR) LDAA (EXT) LDAA (IND,X) LDAA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 86 1 OP 96 1 OP B6 1 OP A6 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A6 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
LDAB (IMM) LDAB (DIR) LDAB (EXT) LDAB (IND,X) LDAB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C6 1 OP D6 1 OP F6 1 OP E6 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E6 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Instruction Set Details
LDD Load Double Accumulator LDD
Operation: ACCX ⇐ (M : M + 1); ACCA ⇐ (M), ACCB ⇐ (M + 1)

Description: Loads the contents of memory locations M and M + 1 into the double
accumulator D. The condition codes are set according to the data. The
information from location M is loaded into accumulator A, and the
information from location M + 1 is loaded into accumulator B.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
LDD (IMM) LDD (DIR) LDD (EXT) LDD (IND,X) LDD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CC 1 OP DC 1 OP FC 1 OP EC 1 OP 18 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EC 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 Y + ff + 1 (Y + ff + 1) 1

LDS Load Stack Pointer LDS
Operation: SPH ⇐ (M), SPL ⇐ (M + 1)

Description: Loads the most significant byte of the stack pointer from the byte of
memory at the address specified by the program, and loads the least
significant byte of the stack pointer from the next byte of memory at one
plus the address specified by the program.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDS (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
LDS (IMM) LDS (DIR) LDS (EXT) LDS (IND,X) LDS (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8E 1 OP 9E 1 OP BE 1 OP AE 1 OP 18 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AE 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 Y + ff + 1 (Y + ff + 1) 1

Instruction Set Details
LDX Load Index Register X LDX
Operation: IXH ⇐ (M), IXL ⇐ (M + 1)

Description: Loads the most significant byte of index register X from the byte of
memory at the address specified by the program, and loads the least
significant byte of index register X from the next byte of memory at one
plus the address specified by the program.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDX (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
LDX (IMM) LDX (DIR) LDX (EXT) LDX (IND,X) LDX (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CE 1 OP DE 1 OP FE 1 OP EE 1 OP CD 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EE 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 Y + ff + 1 (Y + ff + 1) 1

Instruction Set Details
LSL Logical Shift Left LSL
(Same as ASL)

Operation:

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of ACCX
or M.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C M7
Set if, before the shift, the MSB of ACCX or M was set; cleared
otherwise.

Source Forms: LSLA; LSLB; LSL (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 0

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
LSLA (INH) LSLB (INH) LSL (EXT) LSL (IND,X) LSL (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 48 1 OP 58 1 OP 78 1 OP 68 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 68 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

LSLD Logical Shift Left Double LSLD
(Same as ASLD)

Operation:

Description: Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a 0. The
C bit in the CCR is loaded from the most significant bit of ACCD.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C D15
Set if, before the shift, the MSB of ACCD was set; cleared otherwise.

Source Form: LSLD

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 b7 – – – – – – b0 0

ACCA ACCB

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
LSLD (INH)

Addr Data R/W
1 OP 05 1
2 OP + 1 — 1
3 FFFF — 1

Instruction Set Details
LSR Logical Shift Right LSR
Operation:

Description: Shifts all bits of the ACCX or M one place to the right. Bit 7 is loaded
with 0. The C bit is loaded from the least significant bit of ACCX or M.

Condition Codes
and Boolean

Formulae:

N 0
Cleared.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Since N = 0, this simplifies to C (after the shift).

C M0
Set if, before the shift, the LSB of ACCX or M was set; cleared
otherwise.

Source Forms: LSRA; LSRB; LSR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cb7 – – – – – – b00

S X H I N Z V C

— — — — 0 Ù Ù Ù

Cycle
LSRA (INH) LSRB (INH) LSR (EXT) LSR (IND,X) LSR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 44 1 OP 54 1 OP 74 1 OP 64 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 64 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

LSRD Logical Shift Right Double Accumulator LSRD
Operation:

Description: Shifts all bits of ACCD one place to the right. Bit 15 (MSB of ACCA) is
loaded with 0. The C bit is loaded from the least significant bit of ACCD
(LSB of ACCB).

Condition Codes
and Boolean

Formulae:

N 0
Cleared.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D0
Set if, after the shift operation, C is set; cleared otherwise.

C D0
Set if, before the shift, the least significant bit of ACCD was set;
cleared otherwise.

Source Form: LSRD

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cb7 – – – – – – b0 b7 – – – – – – b0

ACCA ACCB

0

S X H I N Z V C

— — — — 0 Ù Ù Ù

Cycle
LSRD (INH)

Addr Data R/W
1 OP 04 1
2 OP + 1 — 1
3 FFFF — 1

Instruction Set Details
MUL Multiply Unsigned MUL
Operation: ACCD ⇐ (ACCA) × (ACCB)

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit
unsigned binary value in accumulator B to obtain a 16-bit unsigned result
in the double accumulator D. Unsigned multiply allows multiple-precision
operations. The carry flag allows rounding the most significant byte of
the result through the sequence MUL, ADCA #0.

Condition Codes
and Boolean

Formulae:

C R7
Set if bit 7 of the result (ACCB bit 7) is set; cleared otherwise.

Source Form: MUL

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — Ù

Cycle
MUL (INH)

Addr Data R/W
1 OP 3D 1
2 OP + 1 — 1

3–10 FFFF — 1

NEG Negate NEG
Operation: ACCX ⇐ – (ACCX) = $00 – (ACCX) or: M ⇐ – (M) = $00 – (M)

Description: Replaces the contents of ACCX or M with its twos complement; the value
$80 is left unchanged

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a twos complement overflow from the implied
subtraction from zero; cleared otherwise. A twos complement
overflow will occur if and only if the contents of ACCX or M is $80.

C R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise. The C bit will be set in all cases except when the contents
of ACCX or M is $00.

Source Forms: NEGA; NEGB; NEG (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
NEGA (INH) NEGB (INH) NEG (EXT) NEG (IND,X) NEG (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 40 1 OP 50 1 OP 70 1 OP 60 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 60 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

Instruction Set Details
NOP No Operation NOP
Description: This is a single-byte instruction that causes only the program counter to

be incremented. No other registers are affected. This instruction is
typically used to produce a time delay although some software
disciplines discourage CPU frequency-based time delays. During
debug, NOP instructions are sometimes used to temporarily replace
other machine code instructions, thus disabling the replaced
instructions.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: NOP

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
NOP (INH)

Addr Data R/W
1 OP 01 1
2 OP + 1 — 1

ORA Inclusive OR ORA
Operation: ACCX ⇐ (ACCX) + (M)

Description: Performs the logical inclusive-OR between the contents of ACCX and
the contents of M and places the result in ACCX. (Each bit of ACCX after
the operation will be the logical inclusive-OR of the corresponding bits of
M and ACCX before the operation.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: ORAA (opr); ORAB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
ORAA (IMM) ORAA (DIR) ORAA (EXT) ORAA (IND,X) ORAA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8A 1 OP 9A 1 OP BA 1 OP AA 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AA 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
ORAB (IMM) ORAB (DIR) ORAB (EXT) ORAB (IND,X) ORAB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CA 1 OP DA 1 OP FA 1 OP EA 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EA 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Instruction Set Details
PSH Push Data onto Stack PSH
Operation: ⇓ ACCX, SP ⇐ (SP) – $0001

Description: The contents of ACCX are stored on the stack at the address contained
in the stack pointer. The stack pointer is then decremented.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Forms: PSHA; PSHB

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PSHA (INH) PSHB (INH)

Addr Data R/W Addr Data R/W
1 OP 36 1 OP 37 1
2 OP + 1 — 1 OP + 1 — 1
3 SP (A) 0 SP (B) 0

PSHX Push Index Register X onto Stack PSHX
Operation: ⇓ (IXL), SP ⇐ (SP) – $0001

⇓ (IXH), SP ⇐ (SP) – $0001

Description: The contents of index register X are pushed onto the stack (low-order
byte first) at the address contained in the stack pointer. The stack pointer
is then decremented by two.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: PSHX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PSHX (INH)

Addr Data R/W
1 OP 3C 1
2 OP + 1 — 1
3 SP (IXL) 0
4 SP – 1 (IXH) 0

PUL Pull Data from Stack PUL
Operation: SP ⇐ (SP) + $0001, ⇑ (ACCX)

Description: The stack pointer is incremented. The ACCX is then loaded from the
stack at the address contained in the stack pointer.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Forms: PULA; PULB

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PULA (INH) PULB (INH)

Addr Data R/W Addr Data R/W
1 OP 32 1 OP 33 1
2 OP + 1 — 1 OP + 1 — 1
3 SP — 1 SP — 1
4 SP + 1 get A 1 SP + 1 get B 1

Instruction Set Details
PULX Pull Index Register X from Stack PULX
Operation: SP ⇐ (SP) + $0001; ⇑ (IXH)

SP ⇐ (SP) + $0001; ⇑ (IXL)

Description: Index register X is pulled from the stack (high-order byte first) beginning
at the address contained in the stack pointer plus one. The stack pointer
is incremented by two in total.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: PULX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PULX (INH)

Addr Data R/W
1 OP 38 1
2 OP + 1 — 1
3 SP — 1
4 SP + 1 get IXH 1
5 SP + 2 get IXL 1

Instruction Set Details
ROL Rotate Left ROL
Operation:

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded from
the C bit. The C bit in the CCR is loaded from the most significant bit of
ACCX or M. The rotate operations include the carry bit to allow extension
of the shift and rotate operations to multiple bytes. For example, to shift
a 24-bit value left one bit, the sequence ASL LOW, ROL MID, ROL HIGH
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the rotate)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the rotate).

C M7
Set if, before the rotate, the MSB of ACCX or M was set; cleared
otherwise.

Source Forms: ROLA; ROLB; ROL (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 C

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
ROLA (INH) ROLB (INH) ROL (EXT) ROL (IND,X) ROL (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 49 1 OP 59 1 OP 79 1 OP 69 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 69 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

ROR Rotate Right ROR
Operation:

Description: Shifts all bits of the ACCX or M one place to the right. Bit 7 is loaded from
the C bit. The C bit in the CCR is loaded from the least significant bit of
ACCX or M. The rotate operations include the carry bit to allow extension
of the shift and rotate operations to multiple bytes. For example, to shift
a 24-bit value right one bit, the sequence LSR HIGH, ROR MID, ROR
LOW could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively. The first
LSR could be replaced by ASR to maintain the original value of the sign
bit (MSB of high-order byte) of the 24-bit value.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the rotate)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the rotate).

C M0
Set if, before the rotate, the LSB of ACCX or M was set; cleared
otherwise.

Source Forms: RORA; RORB; ROR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 C

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
RORA (INH) RORB (INH) ROR (EXT) ROR (IND,X) ROR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 46 1 OP 56 1 OP 76 1 OP 66 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 66 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0

Instruction Set Details
RTI Return from Interrupt RTI
Operation: SP ⇐ (SP) + $0001, ⇑ (CCR)

SP ⇐ (SP) + $0001, ⇑ (ACCB)
SP ⇐ (SP) + $0001, ⇑ (ACCA)
SP ⇐ (SP) + $0001, ⇑ (IXH)
SP ⇐ (SP) + $0001, ⇑ (IXL)
SP ⇐ (SP) + $0001, ⇑ (IYH)
SP ⇐ (SP) + $0001, ⇑ (IYL)
SP ⇐ (SP) + $0001, ⇑ (PCH)
SP ⇐ (SP) + $0001, ⇑ (PCL)

Description: The condition code, accumulators B and A, index registers X and Y, and
the program counter will be restored to a state pulled from the stack. The
X bit in the CCR may be cleared as a result of an RTI instruction but may
not be set if it was cleared prior to execution of the RTI instruction.

Condition Codes
and Boolean

Formulae:

Condition code bits take on the value of the corresponding bit of the
unstacked CCR except that the X bit may not change from a 0 to a 1.
Software can leave X set, leave X clear, or change X from 1 to 0.
The XIRQ interrupt mask can become set only as a result of a reset or
recognition of an XIRQ interrupt.

Source Form: RTI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

Ù ⇓ Ù Ù Ù Ù Ù Ù

Cycle
RTI (INH)

Addr Data R/W
1 OP 3B 1
2 OP + 1 — 1
3 SP — 1
4 SP + 1 get CC 1
5 SP + 2 get B 1
6 SP + 3 get A 1
7 SP + 4 get IXH 1
8 SP + 5 get IXL 1
9 SP + 6 get IYH 1
10 SP + 7 get IYL 1
11 SP + 8 Rtn hi 1
12 SP + 9 Rtn lo 1

RTS Return from Subroutine RTS
Operation: SP ⇐ (SP) + $0001, ⇑ (PCH)

SP ⇐ (SP) + $0001, ⇑ (PCL)

Description: The stack pointer is incremented by one. The contents of the byte of
memory, at the address now contained in the stack pointer, are loaded
into the high-order eight bits of the program counter. The stack pointer is
again incremented by one. The contents of the byte of memory, at the
address now contained in the stack pointer, are loaded into the low-order
eight bits of the program counter.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: RTS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
RTS (INH)

Addr Data R/W
1 OP 39 1
2 OP + 1 — 1
3 SP — 1
4 SP + 1 Rtn hi 1
5 SP + 2 Rtn lo 1

Instruction Set Details
SBA Subtract Accumulators SBA
Operation: ACCA ⇐ (ACCA) – (ACCB)

Description: Subtracts the contents of ACCB from the contents of ACCA and places
the result in ACCA. The contents of ACCB are not affected. For subtract
instructions, the C bit in the CCR represents a borrow.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V A7 • B7 • R7 + A7 • B7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C A7 • B7 + B7 • R7 + R7 • A7
Set if the absolute value of ACCB is larger than the absolute value of
ACCA; cleared otherwise.

Source Form: SBA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
SBA (INH)

Addr Data R/W
1 OP 10 1
2 OP + 1 — 1

SBC Subtract with Carry SBC
Operation: ACCX ⇐ (ACCX) – (M) – (C)

Description: Subtracts the contents of M and the contents of C from the contents of
ACCX and places the result in ACCX. For subtract instructions, the C bit
in the CCR represents a borrow.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the contents of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Source Forms: SBCA (opr); SBCB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
SBCA (IMM) SBCA (DIR) SBCA (EXT) SBCA (IND,X) SBCA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 82 1 OP 92 1 OP B2 1 OP A2 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A2 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
SBCB (IMM) SBCB (DIR) SBCB (EXT) SBCB (IND,X) SBCB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C2 1 OP D2 1 OP F2 1 OP E2 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E2 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Instruction Set Details
SEC Set Carry SEC
Operation: C bit ⇐ 1

Description: Sets the C bit in the CCR.

Condition Codes
and Boolean

Formulae:

C 1
Set

Source Form: SEC

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — 1

Cycle
SEC (INH)

Addr Data R/W
1 OP 0D 1
2 OP + 1 — 1

SEI Set Interrupt Mask SEI
Operation: I bit ⇐ 1

Description: Sets the interrupt mask bit in the CCR. When the I bet is set, all
maskable interrupts are inhibited, and the MPU will recognize only
non-maskable interrupt sources or an SWI.

Condition Codes
and Boolean

Formulae:

I 1
Set

Source Form: SEI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — 1 — — — —

Cycle
SEI (INH)

Addr Data R/W
1 OP 0F 1
2 OP + 1 — 1

Instruction Set Details
SEV Set Two’s Complement Overflow Bit SEV
Operation: V bit ⇐ 1

Description: Sets the twos complement overflow bit in the CCR.

Condition Codes
and Boolean

Formulae:

V 1
Set

Source Form: SEV

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — 1 —

Cycle
SEV (INH)

Addr Data R/W
1 OP 0B 1
2 OP + 1 — 1

STA Store Accumulator STA
Operation: M ⇐ (ACCX)

Description: Stores the contents of ACCX in memory. The contents of ACCX remain
the same.

Condition Codes
and Boolean

Formulae:

N X7
Set if MSB of result is set; cleared otherwise.

Z X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: STAA (opr); STAB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
STAA (DIR) STAA (EXT) STAA (IND,X) STAA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 97 1 OP B7 1 OP A7 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A7 1
3 00dd (A) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (A) 0 X + ff (A) 0 FFFF — 1
5 Y + ff (A) 0

Cycle
STAB (DIR) STAB (EXT) STAB (IND,X) STAB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP D7 1 OP F7 1 OP E7 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E7 1
3 00dd (B) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (B) 0 X + ff (B) 0 FFFF — 1
5 Y + ff (B) 0

Instruction Set Details
STD Store Double Accumulator STD
Operation: M : M + 1 ⇐ (ACCD); M ⇐ (ACCA), M + 1 ⇐ (ACCB)

Description: Stores the contents of double accumulator ACCD in memory. The
contents of ACCD remain unchanged.

Condition Codes
and Boolean

Formulae:

N D15
Set if MSB of result is set; cleared otherwise.

Z D15 • D14 • D13 • D12 • D11 • D10 • D9 • D8 • D7 • D6 • D5 • D4 •
D3 • D2 • D1 • D0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
STD (DIR) STD (EXT) STD (IND,X) STD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP DD 1 OP FD 1 OP ED 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 ED 1
3 00dd (A) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 00dd + 1 (B) 0 hhll (A) 0 X + ff (A) 0 FFFF — 1
5 hhll + 1 (B) 0 X + ff + 1 (B) 0 Y + ff (A) 0
6 Y + ff + 1 (B) 0

Instruction Set Details
STS Store Stack Pointer STS
Operation: M ⇐ (SPH), M + 1 ⇐ (SPL)

Description: Stores the most significant byte of the stack pointer in memory at the
address specified by the program and stores the least significant byte of
the stack pointer at the next location in memory, at one plus the address
specified by the program.

Condition Codes
and Boolean

Formulae:

N SP15
Set if MSB of result is set; cleared otherwise.

Z SP15 • SP14 • SP13 • SP12 • SP11 • SP10 • SP9 • SP8 • SP7 •
SP6 • SP5 • SP4 • SP3 • SP2 • SP1 • SP0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STS (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
STS (DIR) STS (EXT) STS (IND,X) STS (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 9F 1 OP BF 1 OP AF 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AF 1
3 00dd (SPH) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 00dd + 1 (SPL) 0 hhll (SPH) 0 X + ff (SPH) 0 FFFF — 1
5 hhll + 1 (SPL) 0 X + ff + 1 (SPL) 0 Y + ff (SPH) 0
6 Y + ff + 1 (SPL) 0

STX Store Index Register X STX
Operation: M ⇐ (IXH), M + 1 ⇐ (IXL)

Description: Stores the most significant byte of index register X in memory at the
address specified by the program, and stores the least significant byte of
index register X at the next location in memory, at one plus the address
specified by the program.

Condition Codes
and Boolean

Formulae:

N IX15
Set if MSB of result is set; cleared otherwise.

Z IX15 • IX14 • IX13 • IX12 • IX11 • IX10 • IX9 • IX8 • IX7 • IX6 • IX5 •
IX4 • IX3 • IX2 • IX1 • IX0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STX (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
STX (DIR) STX (EXT) STX (IND,X) STX (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP DF 1 OP FF 1 OP EF 1 OP CD 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EF 1
3 00dd (IXH) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 00dd + 1 (IXL) 0 hhll (IXH) 0 X + ff (IXH) 0 FFFF — 1
5 hhll + 1 (IXL) 0 X + ff + 1 (IXL) 0 Y + ff (IXH) 0
6 Y + ff + 1 (IXL) 0

SUB Subtract SUB
Operation: ACCX ⇐ (ACCX) – (M)

Description: Subtracts the contents of M from the contents of ACCX and places the
result in ACCX. For subtract instructions, the C bit in the CCR represents
a borrow.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the contents of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Source Forms: SUBA (opr); SUBB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
SUBA (IMM) SUBA (DIR) SUBA (EXT) SUBA (IND,X) SUBA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 80 1 OP 90 1 OP B0 1 OP A0 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A0 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
SUBB (IMM) SUBB (DIR) SUBB (EXT) SUBB (IND,X) SUBB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C0 1 OP D0 1 OP F0 1 OP E0 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E0 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Instruction Set Details
SUBD Subtract Double Accumulator SUBD
Operation: ACCD ⇐ (ACCD) – (M : M + 1)

Description: Subtracts the contents of M : M + 1 from the contents of double
accumulator D and places the result in ACCD. For subtract instructions,
the C bit in the CCR represents a borrow.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D15 • M15 • R15 + D15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C D15 • M15 + M15 • R15 + R15 • D15
Set if the absolute value of the contents of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Source Form: SUBD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù Ù Ù

Cycle
SUBD (IMM) SUBD (DIR) SUBD (EXT) SUBD (IND,X) SUBD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 83 1 OP 93 1 OP B3 1 OP A3 1 OP 18 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A3 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 FFFF — 1 FFFF — 1 Y + ff + 1 (Y + ff + 1) 1
7 FFFF — 1

SWI Software Interrupt SWI
Operation: PC ⇐ (PC) + $0001

⇓ (PCL), SP ⇐ (SP) – $0001
⇓ (PCH), SP ⇐ (SP) – $0001
⇓ (IYL), SP ⇐ (SP) – $0001
⇓ (IYH), SP ⇐ (SP) – $0001
⇓ (IXL), SP ⇐ (SP) – $0001
⇓ (IXH), SP ⇐ (SP) – $0001
⇓ (ACCA), SP ⇐ (SP) – $0001
⇓ (ACCB), SP ⇐ (SP) – $0001
⇓ (CCR), SP ⇐ (SP) – $0001
I ⇐ 1, PC ⇐ (SWI vector)

Description: The program counter is incremented by one. The program counter,
index registers Y and X, and accumulators A and B are pushed onto the
stack. The CCR is then pushed onto the stack. The stack pointer is
decremented by one after each byte of data is stored on the stack. The
I bit in the CCR is then set. The program counter is loaded with the
address stored at the SWI vector, and instruction execution resumes at
this location. This instruction is not maskable by the I bit.

Condition Codes
and Boolean

Formulae:
I 1

Set

Source Form: SWI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C
— — — 1 — — — —

Cycle
SWI (INH)

Addr Data R/W
1 OP 3F 1
2 OP + 1 — 1
3 SP Rtn lo 0
4 SP – 1 Rtn hi 0
5 SP – 2 (IYL) 0
6 SP – 3 (IYH) 0
7 SP – 4 (IXL) 0
8 SP – 5 (IXH) 0
9 SP – 6 (A) 0

10 SP – 7 (B) 0
11 SP – 8 (CCR) 0
12 SP – 8 (CCR) 1
13 Vec hi Svc hi 1
14 Vec lo Svc lo 1

Instruction Set Details
TAB Transfer from Accumulator A to B TAB
Operation: ACCB ⇐ (ACCA)

Description: Moves the contents of ACCA to ACCB. The former contents of ACCB
are lost; the contents of ACCA are not affected.

Condition Codes and Boolean Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared.

Source Form: TAB

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
TAB (INH)

Addr Data R/W
1 OP 16 1
2 OP + 1 — 1

TAP Transfer from Accumulator A to CCR TAP
Operation: CCR ⇐ (ACCA)

Description: Transfers the contents of bit positions 7–0 of accumulator A to the
corresponding bit positions of the CCR. The contents of accumulator A
remain unchanged. The X bit in the CCR may be cleared as a result of
a TAP instruction but may not be set if it was clear prior to execution of
the TAP instruction.

Condition Codes
and Boolean

Formulae:

Condition code bits take on the value of the corresponding bit of
accumulator A except that the X bit may not change from a 0 to a 1.
Software can leave X set, leave X clear, or change X from 1 to 0. The
XIRQ interrupt mask can become set only as a result of a reset or
recognition of an XIRQ interrupt.

Source Form: TAP

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

7 6 5 4 3 2 1 0

ACCA

CCR

Carry/Borrow
Overflow (Two’s Complement)
Zero
Negative
I Interrupt Mask
Half Carry
X Interrupt Mask
Stop Disable

Bit Positions

S X H I N Z V C

S X H I N Z V C

Ù ⇓ Ù Ù Ù Ù Ù Ù

Cycle
TAP (INH)

Addr Data R/W
1 OP 06 1
2 OP + 1 — 1

Instruction Set Details
TBA Transfer from Accumulator B to A TBA
Operation: ACCA ⇐ (ACCB)

Description: Moves the contents of ACCB to ACCA. The former contents of ACCA
are lost; the contents of ACCB are not affected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared.

Source Form: TBA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 —

Cycle
TBA (INH)

Addr Data R/W
1 OP 17 1
2 OP + 1 — 1

Instruction Set Details
TPA Transfer from CCR to Accumulator A TPA
Operation: ACCA ⇐ (CCR)

Description: Transfers the contents of the CCR to corresponding bit positions of
accumulator A. The CCR remains unchanged.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TPA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

7 6 5 4 3 2 1 0

ACCA

CCR

Carry/Borrow
Overflow (Two’s Complement)
Zero
Negative
I Interrupt Mask
Half Carry
X Interrupt Mask
Stop Disable

Bit Positions

S X H I N Z V C

S X H I N Z V C

— — — — — — — —

Cycle
TPA (INH)

Addr Data R/W
1 OP 07 1
2 OP + 1 — 1

TST Test TST
Operation: (ACCX) – $00 or: (M) – $00

Description: Subtracts $00 from the contents of ACCX or M and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying either
ACCX or M.

The TST instruction provides only minimum information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility. While BHI could be used after TST, it provides
exactly the same control as BNE, which is preferred. After testing signed
values, all signed branches are available.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z M7 • M6 • M5 • M4 • M3 • M2 • M1 • M0
Set if result is $00; cleared otherwise.

V 0
Cleared

C 0
Cleared

Source Forms: TSTA; TSTB; TST (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ù Ù 0 0

Cycle
TSTA (INH) TSTB (INH) TST (EXT) TST (IND,X) TST (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 4D 1 OP 5D 1 OP 7D 1 OP 6D 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6D 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 FFFF — 1 FFFF — 1 FFFF — 1
7 FFFF — 1

Instruction Set Details
TSX Transfer from SP to Index Register X TSX
Operation: IX ⇐ (SP) + $0001

Description: Loads the index register X with one plus the contents of the stack
pointer. The contents of the stack pointer remain unchanged. After a
TSX instruction, the index register X points at the last value that was
stored on the stack.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TSX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TSX (INH)

Addr Data R/W
1 OP 30 1
2 OP + 1 — 1
3 SP — 1

Instruction Set Details
TXS Transfer from Index Register X to SP TXS
Operation: SP ⇐ (IX) – $0001

Description: Loads the stack pointer with the contents of index register X minus one.
The contents of index register X remain unchanged.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TXS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TXS (INH)

Addr Data R/W
1 OP 35 1
2 OP + 1 — 1
3 FFFF — 1

Instruction Set Details
WAI Wait for Interrupt WAI
Operation: PC ⇐ (PC) + $0001

⇓ (PCL), SP ⇐ (SP) – $0001
⇓ (PCH), SP ⇐ (SP) – $0001
⇓ (IYL), SP ⇐ (SP) – $0001
⇓ (IYH), SP ⇐ (SP) – $0001
⇓ (IXL), SP ⇐ (SP) – $0001
⇓ (IXH), SP ⇐ (SP) – $0001
⇓ (ACCA), SP ⇐ (SP) – $0001
⇓ (ACCB), SP ⇐ (SP) – $0001
⇓ (CCR), SP ⇐ (SP) – $0001

Description: The program counter is incremented by one. The program counter,
index registers Y and X, and accumulators A and B are pushed onto the
stack. The CCR is then pushed onto the stack. The stack pointer is
decremented by one after each byte of data is stored on the stack.

The MPU then enters a wait state for an integer number of MCU E-clock
cycles. While in the wait state, the address/data bus repeatedly runs
read bus cycles to the address where the CCR contents were stacked.
The MCU leaves the wait state when it senses any interrupt that has not
been masked.

Upon leaving the wait state, the MCU sets the I bit in the CCR, fetches
the vector (address) corresponding to the interrupt sensed, and
instruction execution is resumed at this location.

Condition Codes
and Boolean

Formulae:

Although the WAI instruction itself does not alter the condition code bits,
the interrupt which causes the MCU to resume processing causes the
I bit (and the X bit if the interrupt was XIRQ) to be set as the interrupt
vector is being fetched.

S X H I N Z V C

— — — 1 — — — —

WAI Wait for Interrupt WAI
(Continued)

Source Form: WAI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cycle
WAI (INH)

Addr Data R/W
1 OP 3E 1
2 OP + 1 — 1
3 SP Rtn lo 0
4 SP – 1 Rtn hi 0
5 SP – 2 (IYL) 0
6 SP – 3 (IYH) 0
7 SP – 4 (IXL) 0
8 SP – 5 (IXH) 0
9 SP – 6 (A) 0

10 SP – 7 (B) 0
11 SP – 8 (CCR) 0

12 to 12 + n SP – 8 (CCR) 1
13 + n Vec hi Svc hi 1
14 + n Vec lo Svc lo 1

	A
	ABA
	ABX
	ADC
	ADD
	ADDD
	AND
	ASL
	ASLD
	ASR

	B
	BCC
	BCS
	BEQ
	BGE
	BGT
	BHI
	BHS
	BIT
	BLE
	BLO
	BLS
	BLT
	BMI
	BNE
	BPL
	BRA
	BRN
	BSR
	BVC
	BVS

	C
	CBA
	CLC
	CLI
	CLR
	CLV
	CMP
	COM
	CPX

	D
	DAA
	DEC
	DES
	DEX

	E
	EOR

	I
	INC
	INS
	INX

	J
	JMP
	JSR

	L
	LDA
	LDD
	LDS
	LDX
	LSL
	LSLD
	LSR
	LSRD

	M
	MUL

	N
	NEG
	NOP

	O
	ORA

	P
	PSH
	PSHX
	PUL
	PULX

	R
	ROL
	ROR
	RTI
	RTS

	S
	SBA
	SBC
	SEC
	SEI
	SEV
	STA
	STD
	STS
	STX
	SUB
	SUBD
	SWI

	T
	TAB
	TAP
	TBA
	TPA
	TST
	TSX
	TXS

	WAI

