
MC68000 and MC68EC000  Instruction Set Summary 

Mnemonic Description 
ABCD Add Decimal with Extend 
ADD Add 
ADDA Add Address 
ADDI Add Immediate 
ADDQ Add Quick 
ADDX Add with Extend 
AND Logical AND 
ANDI Logical AND Immediate 
ANDI to CCR AND Immediate to Condition Code Register 
ANDI to SR AND Immediate to Status Register 
ASL, ASR Arithmetic Shift Left and Right 
Bcc Branch Conditionally 
BCHG Test Bit and Change 
BCLR Test Bit and Clear 
BRA Branch 
BSET Test Bit and Set 
BSR Branch to Subroutine 
BTST Test Bit 
CHK Check Register Against Bound 
CLR Clear 
CMP Compare 
CMPA Compare Address 
CMPI Compare Immediate 
CMPM Compare Memory to Memory 
DBcc Test Condition, Decrement, and Branch 
DIVS Signed Divide 
DIVU Unsigned Divide 
EOR Logical Exclusive-OR 
EORI Logical Exclusive-OR Immediate 
EORI to CCR Exclusive-OR Immediate to Condition Code Register 
EORI to SR Exclusive-OR Immediate to Status Register 
EXG Exchange Registers 
EXT Sign Extend 
ILLEGAL Take Illegal Instruction Trap 
JMP Jump 
JSR Jump to Subroutine 



(Continued)

Mnemonic Description 
LEA Load Effective Address 
LINK Link and Allocate 
LSL, LSR Logical Shift Left and Right 
MOVE Move 
MOVEA Move Address 
MOVE to CCR Move to Condition Code Register 

MOVE to SR Move to Status Register 
MOVE USP Move User Stack Pointer 
MOVEM Move Multiple Registers 
MOVEP Move Peripheral 
MOVEQ Move Quick 
MULS Signed Multiply 
MULU Unsigned Multiply 
NBCD Negate Decimal with Extend 
NEG Negate 
NEGX Negate with Extend 
NOP No Operation 
NOT Logical Complement 
OR Logical Inclusive-OR 
ORI Logical Inclusive-OR Immediate 
ORI to CCR Inclusive-OR Immediate to Condition Code Register 
ORI to SR Inclusive-OR Immediate to Status Register 
PEA Push Effective Address 
RESET Reset External Devices 
ROL, ROR Rotate Left and Right 
ROXL, ROXR Rotate with Extend Left and Right 
RTE Return from Exception 
RTR Return and Restore 
RTS Return from Subroutine 
SBCD Subtract Decimal with Extend 
Scc Set Conditionally 
STOP Stop 
SUB Subtract 
SUBA Subtract Address 
SUBI Subtract Immediate 
SUBQ Subtract Quick 
SUBX Subtract with Extend 
SWAP Swap Register Words 
TAS Test Operand and Set 
TRAP Trap 
TRAPV Trap on Overflow 
TST Test Operand 
UNLK Unlink 

MC68000 and MC68EC000  Instruction Set Summary

MOVE from SR Move from Status Register 



                                           

Operands
An Any Address Register n (example: A3 is address register 3)

Rn Any data or address registerData register D7–D0, used during compare.

SR Status register

Dn Any Data Register n (example: D5 is data register 5)

PC Program counter

CCR Condition codes register (low order byte of SR)

SSP Supervisor stack pointer

USP User stack pointer

SP Active stack pointer (same as A7)

    X     Extend flag of the CCR

ea Any valid effective address

    N     Negative flag of the CCR

    Z     Zero flag of the CCR

    V     Overflow flag of the CCR

    C     Carry flag of the CCR

 Immediate data    Immediate data for the instruction

    d     Address displacement

       Source           Source contents
    Destination       Destination contents

       Vector            Location of exception vector

Notational Conventions
+ Arithmetic addition or postincrement indicator

– Arithmetic subtraction or predecrement indicator

× Arithmetic multiplication

÷ Arithmetic division or conjunction symbol

~ Invert; operand is logically complemented.

Λ Logical AND

V Logical OR

⊕ Logical exclusive OR

→ Source operand is moved to destination operand.

←→ Two operands are exchanged.

Operands and Notational Conventions



     

ABCD

 

Add Decim

  

Operation:

 

Source10 + Destinat

   

Assembler

 

ABCD Dy,Dx 

 

Syntax:

 

ABCD – (Ay), – (Ax)

 

Attributes:

 

Size = (Byte) 

 

Description: 

 

Adds the source operand to
and stores the result in the destinatio
coded decimal arithmetic. The op
numbers, can be addressed in two

1. Data Register to Data Regist
ters specified in the instructi

2. Memory to Memory: The op
dressing mode using the ad

This operation is a byte operation on

 

Condition Codes: 

 

X — Set the same as the carry bi
N — Undefined. 
Z — Cleared if the result is nonze
V — Undefined. 
C — Set if a decimal carry was g

  

Normally, the Z condition co
the start of an operation.
results upon completion of

 

X N Z V C 

 

*

 

U

 

*

 

U

 

*

 

 

Instruction Format: 

Instruction Fields: 

Register Rx field—Specifies the d
If R/M = 0, specifies a data reg
If R/M = 1, specifies an address

R/M field—Specifies the operand
0 — The operation is data regis
1 — The operation is memory to

Register Ry field—Specifies the
If R/M = 0, specifies a data reg
If R/M = 1, specifies an address

INSTRUCTION NAME


ASSEMBLER SYNTAX





SIZE ATTRIBUTE

TEXT DESCRIPTION OF INSTRUCTION OPERATION






INSTRUCTION FORMAT — SPECIFIES THE BIT PATTERN








EFFECTS ON CONDITION CODES













DEFINITIONS AND ALLOWED VALUES FOR THE
INSTRUCTION FIELDS

AND FIELDS OF THE "OPCODE" WORD

15 14 13 12 11 10 9

1 1 0 0 REGISTER Rx REGISTER Ry 



     

ABCD

 

Add Decimal with Extend

 

ABCD 

 

Operation:

 

Source10 + Destination10 + X 

 

→

 

 Destination 

 

Assembler

 

ABCD Dy,Dx 

 

Syntax:

 

ABCD – (Ay), – (Ax) 

 

Attributes:

 

Size = (Byte) 

 

Description: 

 

Adds the source operand to the destination operand along with the extend bit,
and stores the result in the destination location. The addition is performed using binary-
coded decimal arithmetic. The operands, which are packed binary-coded decimal
numbers, can be addressed in two different ways: 

1. Data Register to Data Register: The operands are contained in the data regis-
ters specified in the instruction. 

2. Memory to Memory: The operands are addressed with the predecrement ad-
dressing mode using the address registers specified in the instruction. 

This operation is a byte operation only. 

 

Condition Codes: 

 

X — Set the same as the carry bit. 
N — Undefined. 
Z — Cleared if the result is nonzero; unchanged otherwise. 
V — Undefined. 
C — Set if a decimal carry was generated; cleared otherwise. 

 

NOTE 

 

Normally, the Z condition code bit is set via programming before
the start of an operation. This allows successful tests for zero
results upon completion of multiple-precision operations. 

 

X N Z V C 

 

*

 

U

 

*

 

U

 

*

 

 

Instruction Format: 

Instruction Fields: 

Register Rx field—Specifies the destination register. 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

R/M field—Specifies the operand addressing mode. 
0 — The operation is data register to data register. 
1 — The operation is memory to memory. 

Register Ry field—Specifies the source register. 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER Rx 1 0 0 0 0 R/M REGISTER Ry 



     

ADD

 

Add

 

ADD 

 

Operation:

 

Source + Destination 

 

→

 

 Destination 

 

Assembler

 

ADD < ea > ,Dn 

 

Syntax:

 

ADD Dn, < ea > 

 

Attributes:

 

Size = (Byte, Word, Long) 

 

Description: 

 

Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may be specified
as byte, word, or long. The mode of the instruction indicates which operand is the
source and which is the destination, as well as the operand size. 

 

Condition Codes: 

 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow is generated; cleared otherwise. 
C — Set if a carry is generated; cleared otherwise. 

 

Instruction Format: 

 

X N Z V C 

 

∗ ∗ ∗ ∗ ∗ 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 

Register field—Specifies any of the eight data registers. 

Opmode field 

Byte Word Long Operation 
000 001 010 < ea > + Dn → Dn 
100 101 110 Dn + < ea > → < ea > 



 

ADD Add ADD 

Effective Address field—Determines addressing mode. 

a. If the location specified is a source operand, all addressing modes can be used 
as listed in the following table: 

*Word and long only

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

b. If the location specified is a destination operand, only memory alterable 
addressing modes can be used as listed in the following table: 

NOTE 

The Dn mode is used when the destination is a data register; the
destination < ea > mode is invalid for a data register. 

ADDA is used when the destination is an address register. ADDI
and ADDQ are used when the source is immediate data. Most
assemblers automatically make this distinction. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ADDA Add Address ADDA 

Operation: Source + Destination → Destination 

Assembler 
Syntax: ADDA < ea > , An 

Attributes: Size = (Word, Long) 

Description: Adds the source operand to the destination address register and stores the
result in the address register. The size of the operation may be specified as word or
long. The entire destination address register is used regardless of the operation size. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Register field—Specifies any of the eight address registers. This is always the
destination. 

Opmode field—Specifies the size of the operation. 
011— Word operation; the source operand is sign-extended to a long operand and

the operation is performed on the address register using all 32 bits. 
111— Long operation. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



ADDI Add Immediate ADDI 

 

Operation:

 

Immediate Data + Destination → Destination 

Assembler 
Syntax: ADDI # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Adds the immediate data to the destination operand and stores the result in
the destination location. The size of the operation may be specified as byte, word, or
long. The size of the immediate data matches the operation size. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow is generated; cleared otherwise. 
C — Set if a carry is generated; cleared otherwise. 

Instruction Format: 

X N Z V C 

* * * * * 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

16-BIT WORD DATA 8-BIT BYTE DATA 

32-BIT LONG DATA 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Immediate field—Data immediately following the instruction. 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ADDQ Add Quick ADDQ 
Operation: Immediate Data + Destination → Destination 
Assembler 
Syntax: ADDQ # < data > , < ea > 
Attributes: Size = (Byte, Word, Long) 

Description: Adds an immediate value of one to eight to the operand at the destination
location. The size of the operation may be specified as byte, word, or long. Word and
long operations are also allowed on the address registers. When adding to address
registers, the condition codes are not altered, and the entire destination address
register is used regardless of the operation size. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a carry occurs; cleared otherwise. 

The condition codes are not affected when the destination is an address register. 

Instruction Format: 

X N Z V C 

* * * * * 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 DATA 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Data field—Three bits of immediate data representing eight values (0 – 7), with the

immediate value zero representing a value of eight. 
Size field—Specifies the size of the operation. 

00— Byte operation 
01— Word operation 
10— Long operation 

Effective Address field—Specifies the destination location. Only alterable addressing
modes can be used as listed in the following table: 

*Word and Long only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ADDX Add Extended ADDX 
Operation: Source + Destination + X → Destination 

Assembler ADDX Dy,Dx 
Syntax: ADDX – (Ay), – (Ax) 

Attributes: Size = (Byte, Word, Long) 

Description: Adds the source operand and the extend bit to the destination operand and
stores the result in the destination location. The operands can be addressed in two
different ways: 

1. Data register to data register—The data registers specified in the instruction 
contain the operands. 

2. Memory to memory—The address registers specified in the instruction address 
the operands using the predecrement addressing mode. 

The size of the operation can be specified as byte, word, or long. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Cleared if the result is nonzero; unchanged otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a carry is generated; cleared otherwise. 

NOTE 
Normally, the Z condition code bit is set via programming before
the start of an operation. This allows successful tests for zero
results upon completion of multiple-precision operations. 

X N Z V C 

* * * * * 

Instruction Format: 

Instruction Fields: 
Register Rx field—Specifies the destination register. 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

R/M field—Specifies the operand address mode. 
0 — The operation is data register to data register. 
1 — The operation is memory to memory. 

Register Ry field—Specifies the source register. 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry 

Register Ry field—Specifies the source register. 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 



AND AND Logical AND

Operation: Source L Destination → Destination 

Assembler AND < ea > ,Dn 
Syntax: AND Dn, < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The contents of an address register may not be
used as an operand. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

Instruction Fields: 

Register field—Specifies any of the eight data registers. 

Opmode field 

X N Z V C 
— * * 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Byte Word Long Operation 
000 001 010 < ea > Λ Dn → Dn 
100 101 110 Dn Λ < ea > → < ea > 



AND AND Logical AND 

Effective Address field—Determines addressing mode. 

a. If the location specified is a source operand, only data addressing modes can be
used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

b. If the location specified is a destination operand, only memory alterable address-
ing modes can be used as listed in the following table: 

NOTE 

The Dn mode is used when the destination is a data register; the
destination < ea > mode is invalid for a data register. 

Most assemblers use ANDI when the source is immediate data. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ANDI AND Immediate ANDI 
Operation: Immediate Data Λ Destination → Destination 

Assembler 
Syntax: ANDI # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The size of the immediate data matches the
operation size. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— * * 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA 

32-BIT LONG DATA 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Immediate field—Data immediately following the instruction. 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ANDI ANDI 
to CCR AND Immediate to Condition Codes to CCR

Operation: Source Λ CCR → CCR 

Assembler 
Syntax: ANDI # < data > ,CCR 

Attributes: Size = (Byte) 

Description: Performs an AND operation of the immediate operand with the condition
codes and stores the result in the low-order byte of the status register. 

Condition Codes: 

X — Cleared if bit 4 of immediate operand is zero; unchanged otherwise. 
N — Cleared if bit 3 of immediate operand is zero; unchanged otherwise. 
Z — Cleared if bit 2 of immediate operand is zero; unchanged otherwise. 
V — Cleared if bit 1 of immediate operand is zero; unchanged otherwise. 
C — Cleared if bit 0 of immediate operand is zero; unchanged otherwise. 

Instruction Format: 

X N Z V C 

* * * * * 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 8-BIT BYTE DATA 



ANDI ANDI 
to SR AND Immediate to the Status Register to SR

(Privileged Instruction) 

Operation: Source Λ SR → SR 

Assembler 
Syntax: ANDI # < data >,SR 

Attributes: Size = (Word) 

Description: Performs an AND operation of the immediate operand with the status
register and stores the result in the status register. 

Condition Codes: 

X — Cleared if bit 4 of immediate operand is zero; unchanged otherwise. 
N — Cleared if bit 3 of immediate operand is zero; unchanged otherwise. 
Z — Cleared if bit 2 of immediate operand is zero; unchanged otherwise. 
V — Cleared if bit 1 of immediate operand is zero; unchanged otherwise. 
C — Cleared if bit 0 of immediate operand is zero; unchanged otherwise. 

Instruction Format: 

X N Z V C 

* * * * * 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 

16—BIT WORD DATA 



ASL, ASR Arithmetic Shift ASL, ASR
Operation: Destination Shifted By Count → Destination 

Assembler ASd Dx,Dy 
Syntax: ASd # < data > ,Dy 

ASd < ea > 
where d is direction, L or R 

Attributes: Size = (Byte, Word, Long) 

Description: Arithmetically shifts the bits of the operand in the direction (L or R) specified.
The carry bit receives the last bit shifted out of the operand. The shift count for the
shifting of a register may be specified in two different ways: 

1. Immediate—The shift count is specified in the instruction (shift range, 1 – 8). 

2. Register—The shift count is the value in the data register specified in instruction 
modulo 64. 

The size of the operation can be specified as byte, word, or long. An operand in mem-
ory can be shifted one bit only, and the operand size is restricted to a word. 

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros are
shifted into the low-order bit. The overflow bit indicates if any sign changes occur dur-
ing the shift. .

C OPERAND O

X

ASL:

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign bit
(MSB) is shifted into the high-order bit. 

OPERAND C

X

ASR:

MSB

Condition Codes: 

X — Set according to the last bit shifted out of the operand; unaffected for a shift
count of zero. 

N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if the most significant bit is changed at any time during the shift operation;

cleared otherwise. 
C — Set according to the last bit shifted out of the operand; cleared for a shift count

of zero. 

X N Z V C 

* * * * * 



ASL, ASR Arithmetic Shift ASL, ASR

Instruction Fields (Register Shifts): 
Count/Register field—Specifies shift count or register that contains the shift count: 

If i/r = 0, this field contains the shift count. The values 1 – 7 represent counts of 1 – 
7; a value of zero represents a count of eight. 

If i/r = 1, this field specifies the data register that contains the shift count (modulo 64). 

dr field—Specifies the direction of the shift. 
0 — Shift right 
1 — Shift left 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation

i/r field 
If i/r = 0, specifies immediate shift count. 
If i/r = 1, specifies register shift count. 

Register field—Specifies a data register to be shifted. 

Instruction Format (Memory Shifts):

Instruction Fields (Memory Shifts): 
dr field—Specifies the direction of the shift. 

0 — Shift right 
1 — Shift left 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 0 0 0 dr 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Effective Address field—Specifies the operand to be shifted. Only memory alterable
addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

Instruction Format (Register Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 0 0 REGISTER 



Bcc Branch Conditionally Bcc 
Operation: If Condition True 

Then PC + dn → PC  Assembler 
Syntax: Bcc < label > 

Attributes: Size = (Byte, Word)

Description: If the specified condition is true, program execution continues at location (PC)
+ displacement. The program counter contains the address of the instruction word for
the Bcc instruction plus two. The displacement is a twos-complement integer that
represents the relative distance in bytes from the current program counter to the
destination program counter. If the 8-bit displacement field in the instruction word is
zero, a 16-bit displacement (the word immediately following the instruction) is used.

Condition code cc specifies one of the following conditions:

Condition Codes: Not affected. 

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

GE Greater or Equal NE Not Equal

GT Greater Than PL Plus

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set

Instruction Format: 

Instruction Fields: 
Condition field—The binary code for one of the conditions listed in the table. 

8-Bit Displacement field—Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the
condition is met. 

16-Bit Displacement field—Used for the displacement when the 8-bit displacement
field contains $00. 

NOTE 
A branch to the immediately following instruction automatically
uses the 16-bit displacement format because the 8-bit
displacement field contains $00 (zero offset). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 CONDITION 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 



BCHG Test a Bit and Change BCHG 
Operation: TEST ( < number > of Destination) → Z; 

TEST ( < number > of Destination) → < bit number > of Destination 

Assembler BCHG Dn, < ea > 
Syntax: BCHG # < data > , < ea > 

Attributes: Size = (Byte, Long) 

Description: Tests a bit in the destination operand and sets the Z condition code
appropriately, then inverts the specified bit in the destination. When the destination is
a data register, any of the 32 bits can be specified by the modulo 32-bit number. When
the destination is a memory location, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation may be specified in either of two ways: 

1. Immediate—The bit number is specified in a second word of the instruction. 

2. Register—The specified data register contains the bit number. 

Condition Codes: 

X — Not affected. 
N — Not affected. 
Z — Set if the bit tested is zero; cleared otherwise. 
V — Not affected. 
C — Not affected. 

X N Z V C 
— — * — — 

Instruction Format (Bit Number Dynamic, specified in a register):

Instruction Fields (Bit Number Dynamic): 

Register field—Specifies the data register that contains the bit number. 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

*Long only; all others are byte only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



BCHG Test a Bit and Change BCHG

Instruction Format (Bit Number Static, specified as immediate data):

Instruction Fields (Bit Number Static): 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

*Long only; all others are byte only.

Bit Number field—Specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



BCLR Test a Bit and Clear BCLR 
Operation: TEST ( < bit number > of Destination) → Z; 0 → < bit number > of Des-

tination 

Assembler BCLR Dn, < ea > 
Syntax: BCLR # < data > , < ea > 

Attributes: Size = (Byte, Long) 

Description: Tests a bit in the destination operand and sets the Z condition code
appropriately, then clears the specified bit in the destination. When a data register is
the destination, any of the 32 bits can be specified by a modulo 32-bit number. When
a memory location is the destination, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in either of two ways: 

1. Immediate—The bit number is specified in a second word of the instruction. 

2. Register—The specified data register contains the bit number. 

Condition Codes: 

X — Not affected. 
N — Not affected. 
Z — Set if the bit tested is zero; cleared otherwise. 
V — Not affected. 
C — Not affected. 

X N Z V C 
— — * — — 

Instruction Format (Bit Number Dynamic, specified in a register):

Instruction Fields (Bit Number Dynamic): 

Register field—Specifies the data register that contains the bit number. 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

*Long only; all others are byte only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



BCLR Test a Bit and Clear BCLR 

Instruction Format (Bit Number Static, specified as immediate data):

Instruction Fields (Bit Number Static): 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

*Long only; all others are byte only. 

Bit Number field—Specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



BRA Branch Always BRA 

Operation: PC + dn → PC 

Assembler 
Syntax: BRA < label > 

Attributes: Size = (Byte, Word) 

Description: Program execution continues at location (PC) + displacement. The program
counter contains the address of the instruction word of the BRA instruction plus two.
The displacement is a twos complement integer that represents the relative distance in
bytes from the current program counter to the destination program counter. If the 8-bit
displacement field in the instruction word is zero, a 16-bit displacement (the word
immediately following the instruction) is used. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

8-Bit Displacement field—Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed. 

16-Bit Displacement field—Used for a larger displacement when the 8-bit displacement
is equal to $00. 

NOTE 

A branch to the immediately following instruction automatically
uses the 16-bit displacement format because the 8-bit
displacement field contains $00 (zero offset). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 0 0 0 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 



BSET Test a Bit and Set BSET 

Operation: TEST ( < bit number > of Destination) → Z; 1 → < bit number > of Des-
tination 

Assembler BSET Dn, < ea > 
Syntax: BSET # < data > , < ea > 

Attributes: Size = (Byte, Long) 

Description: Tests a bit in the destination operand and sets the Z condition code
appropriately, then sets the specified bit in the destination operand. When a data
register is the destination, any of the 32 bits can be specified by a modulo 32-bit
number. When a memory location is the destination, the operation is a byte operation,
and the bit number is modulo 8. In all cases, bit zero refers to the least significant bit.
The bit number for this operation can be specified in either of two ways: 

1. Immediate—The bit number is specified in the second word of the instruction. 

2. Register—The specified data register contains the bit number. 

Condition Codes: 

X — Not affected. 
N — Not affected. 
Z — Set if the bit tested is zero; cleared otherwise. 
V — Not affected. 
C — Not affected. 

X N Z V C 
— — ∗ — — 

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



BSET Test a Bit and Set BSET 

Instruction Fields (Bit Number Dynamic):

Register field—Specifies the data register that contains the bit number. 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

*Long only; all others are byte only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

Instruction Format (Bit Number Static, specified as immediate data):

Instruction Fields (Bit Number Static):

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

*Long only; all others are byte only.

Bit Number field—Specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 BIT NUMBER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



BSR Branch to Subroutine BSR 

Operation: SP – 4 → SP; PC → (SP); PC + dn → PC 

Assembler 
Syntax: BSR < label > 

Attributes: Size = (Byte, Word) 

Description: Pushes the long-word address of the instruction immediately following the
BSR instruction onto the system stack. The program counter contains the address of
the instruction word plus two. Program execution then continues at location (PC) +
displacement. The displacement is a twos complement integer that represents the
relative distance in bytes from the current program counter to the destination program
counter. If the 8-bit displacement field in the instruction word is zero, a 16-bit
displacement (the word immediately following the instruction) is used.

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 0 0 1 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

Instruction Fields: 

8-Bit Displacement field—Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed. 

16-Bit Displacement field—Used for a larger displacement when the 8-bit displacement
is equal to $00. 

NOTE 

A branch to the immediately following instruction automatically
uses the 16-bit displacement format because the 8-bit
displacement field contains $00 (zero offset). 



BTST Test a Bit BTST 

Operation: TEST ( < bit number > of Destination) → Z 

Assembler BTST Dn, < ea > 
Syntax: BTST # < data > , < ea > 

Attributes: Size = (Byte, Long) 

Description: Tests a bit in the destination operand and sets the Z condition code
appropriately. When a data register is the destination, any of the 32 bits can be
specified by a modulo 32- bit number. When a memory location is the destination, the
operation is a byte operation, and the bit number is modulo 8. In all cases, bit zero
refers to the least significant bit. The bit number for this operation can be specified in
either of two ways: 

1. Immediate—The bit number is specified in a second word of the instruction. 

2. Register—The specified data register contains the bit number. 

Condition Codes: 

X — Not affected. 
N — Not affected. 
Z — Set if the bit tested is zero; cleared otherwise. 
V — Not affected. 
C — Not affected. 

X N Z V C 
— — ∗ — — 

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 



BTST Test a Bit BTST 

Instruction Fields (Bit Number Dynamic):

Register field—Specifies the data register that contains the bit number. 

Effective Address field—Specifies the destination location. Only data addressing
modes can be used as listed in the following table: 

*Long only; all others are byte only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

Instruction Format (Bit Number Static, specified as immediate data):

Instruction Fields (Bit Number Static):

Effective Address field—Specifies the destination location. Only data addressing
modes can be used as listed in the following table: 

Bit Number field—Specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



CHK Check Register Against Bounds CHK 
Operation: If Dn < 0 or Dn > Source 

Then TRAP 
Assembler 
Syntax: CHK < ea > ,Dn 

Attributes: Size = (Word) 

Description: Compares the value in the data register specified in the instruction to zero and
to the upper bound (effective address operand). The upper bound is a twos
complement integer. If the register value is less than zero or greater than the upper
bound, a CHK instruction exception (vector number 6) occurs. 

Condition Codes: 

X — Not affected. 
N — Set if Dn < 0; cleared if Dn > effective address operand; undefined otherwise. 
Z — Undefined. 
V — Undefined. 
C — Undefined. 

Instruction Format: 

X N Z V C 
— ∗ U U U 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 REGISTER SIZE 0
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 

Register field—Specifies the data register that contains the value to be checked. 

Size field—Specifies the size of the operation. 
11— Word operation 
10— Long operation 

Effective Address field—Specifies the upper bound operand. Only data addressing
modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



CLR Clear an Operand CLR 
Operation: 0 → Destination 

Assembler 
Syntax: CLR < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Clears the destination operand to zero. The size of the operation may be
specified as byte, word, or long. 

Condition Codes: 

X — Not affected. 
N — Always cleared. 
Z — Always set. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— 0 1 0 0 

15 14 13 12 11 10 9 8 7  6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 

Size field—Specifies the size of the operation. 
00— Byte operation 
01— Word operation 
10— Long operation 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

NOTE 

In the MC68000 and MC68008 a memory destination is read before
it is cleared. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



CMP Compare CMP 
Operation: Destination – Source → cc 

Assembler 
Syntax: CMP < ea > , Dn 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the source operand from the destination data register and sets the
condition codes according to the result; the data register is not changed. The size of
the operation can be byte, word, or long. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a borrow occurs; cleared otherwise. 

Instruction Format: 

Instruction Fields: 
Register field—Specifies the destination data register. 

Opmode field 

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Byte Word Long Operation 
000 001 010 Dn – < ea > 

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following table: 

*Word and Long only.
NOTE 

CMPA is used when the destination is an address register. CMPI
is used when the source is immediate data. CMPM is used for
memory-to-memory compares. Most assemblers automatically
make the distinction. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



CMPA Compare Address CMPA 
Operation: Destination – Source → cc 

Assembler 
Syntax: CMPA < ea > , An 

Attributes: Size = (Word, Long) 

Description: Subtracts the source operand from the destination address register and sets
the condition codes according to the result; the address register is not changed. The
size of the operation can be specified as word or long. Word length source operands
are sign- extended to 32 bits for comparison. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow is generated; cleared otherwise. 
C — Set if a borrow is generated; cleared otherwise. 

Instruction Format: 

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Register field—Specifies the destination address register. 

Opmode field—Specifies the size of the operation. 
011— Word operation; the source operand is sign-extended to a long operand, and

the operation is performed on the address register using all 32 bits. 
111— Long operation. 

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



CMPI Compare Immediate CMPI 
Operation: Destination – Immediate Data → cc 

Assembler 
Syntax: CMPI # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the immediate data from the destination operand and sets the
condition codes according to the result; the destination location is not changed. The
size of the operation may be specified as byte, word, or long. The size of the immediate
data matches the operation size. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a borrow occurs; cleared otherwise. 

Instruction Format: 

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

16-BIT WORD DATA 8-BIT BYTE DATA 

32-BIT LONG DATA 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination operand. Only data addressing
modes can be used as listed in the following table: 

Immediate field—Data immediately following the instruction. 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)   —    —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn)   —    —



CMPM Compare Memory CMPM 

Operation: Destination – Source → cc 

Assembler 
Syntax: CMPM (Ay) + ,(Ax) + 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the source operand from the destination operand and sets the
condition codes according to the results; the destination location is not changed. The
operands are always addressed with the postincrement addressing mode, using the
address registers specified in the instruction. The size of the operation may be
specified as byte, word, or long. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow is generated; cleared otherwise. 
C — Set if a borrow is generated; cleared otherwise. 

Instruction Format: 

Instruction Fields: 

Register Ax field—(always the destination) Specifies an address register in the
postincrement addressing mode. 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

Register Ay field—(always the source) Specifies an address register in the
postincrement addressing mode. 

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER Ax 1 SIZE 0 0 1 REGISTER Ay 



DBcc Test Condition, Decrement, and Branch DBcc 

Operation: If Condition False 
Then (Dn – 1 → Dn; If Dn ≠ – 1 Then PC + dn → PC)  

Assembler 
Syntax: DBcc Dn, < label > 

Attributes: Size = (Word) 

Description: Controls a loop of instructions. The parameters are a condition code, a data
register (counter), and a displacement value. The instruction first tests the condition for
termination; if it is true, no operation is performed. If the termination condition is not
true, the low-order 16 bits of the counter data register decrement by one. If the result
is – 1, execution continues with the next instruction. If the result is not equal to – 1,
execution continues at the location indicated by the current value of the program
counter plus the sign-extended 16-bit displacement. The value in the program counter
is the address of the instruction word of the DBcc instruction plus two. The
displacement is a twos complement integer that represents the relative distance in
bytes from the current program counter to the destination program counter. Condition
code cc specifies one of the following conditional tests (refer to Table 3-19 for more
information on these conditional tests): 

Condition Codes: 

Not affected. 

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

F False NE Not Equal

GE Greater or Equal PL Plus

GT Greater Than T True

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set



DBcc Test Condition, Decrement, and Branch DBcc 

Instruction Format: 

Instruction Fields: 

Condition field—The binary code for one of the conditions listed in the table. 

Register field—Specifies the data register used as the counter. 

Displacement field—Specifies the number of bytes to branch. 

NOTE 

The terminating condition is similar to the UNTIL loop clauses of
high-level languages. For example: DBMI can be stated as
"decrement and branch until minus". 

Most assemblers accept DBRA for DBF for use when only a
count terminates the loop (no condition is tested). 

A program can enter a loop at the beginning or by branching to
the trailing DBcc instruction. Entering the loop at the beginning
is useful for indexed addressing modes and dynamically
specified bit operations. In this case, the control index count
must be one less than the desired number of loop executions.
However, when entering a loop by branching directly to the
trailing DBcc instruction, the control count should equal the loop
execution count. In this case, if a zero count occurs, the DBcc
instruction does not branch, and the main loop is not executed. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 CONDITION 1 1 0 0 1 REGISTER 

16-BIT DISPLACEMENT 



DIVS Signed Divide              DIVS

Operation: Destination ÷ Source → Destination 

Assembler DIVS.W < ea > ,Dn32/16 → 16r – 16q 
Syntax:

Attributes: Size = (Word) 

Description: Divides the signed destination operand by the signed source operand and
stores the signed result in the destination.  The instruction divides a long word by a 
word. The result is a quotient in the lower word (least significant 16 bits) and the
remainder in the upper word (most significant 16 bits) of the result. The sign of the
remainder is the same as the sign of the dividend. 

Two special conditions may arise during the operation: 

1. Division by zero causes a trap. 

2. Overflow may be detected and set before the instruction completes. If the in-
struction detects an overflow, it sets the overflow condition code, and the oper-
ands are unaffected. 

Condition Codes: 

X—Not affected. 
N — Set if the quotient is negative; cleared otherwise; undefined if overflow or divide

by zero occurs. 
Z — Set if the quotient is zero; cleared otherwise; undefined if overflow or divide by

zero occurs. 
V — Set if division overflow occurs; undefined if divide by zero occurs; cleared oth-

erwise. 
C — Always cleared. 

X N Z V C 
— ∗ ∗ ∗ 0 

Instruction Format (word form)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



Instruction Fields: 

Register field—Specifies any of the eight data registers. This field always specifies the
destination operand. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

DIVS Signed Divide              DIVS

NOTE 

Overflow occurs if the quotient is larger than a 16-bit signed integer. The
instruction checks for overflow at the start of execution. If the upper word
of the dividend is greater than or equal to the divisor, the overflow bit is
set, and the instruction terminates with the operands unchanged.

Effective Address field—Specifies the source operand. Only data addressing modes
are allowed as shown: 



DIVU Unsigned Divide                           DIVU     

Operation: Destination ÷ Source → Destination 

Assembler DIVU.W < ea > ,Dn32/16 → 16r – 16q 
Syntax:

Attributes: Size = (Word) 

Description: Divides the unsigned destination operand by the unsigned source
operand and stores the unsigned result in the destination. The instruction divides a
long word by a word. The result is a quotient in the lower word (least significant 16bits) 
and the remainder is in the upper word (most significant 16 bits) of the result.

Two special conditions may arise during the operation: 

1. Division by zero causes a trap. 

2. Overflow may be detected and set before the instruction completes. If the in-
struction detects an overflow, it sets the overflow condition code, and the oper-
ands are unaffected. 

Condition Codes: 

X — Not affected. 
N — Set if the quotient is negative; cleared otherwise; undefined if overflow or divide

by zero occurs. 
Z — Set if the quotient is zero; cleared otherwise; undefined if overflow or divide by

zero occurs. 
V — Set if division overflow occurs; cleared otherwise; undefined if divide by zero

occurs. 
C — Always cleared. 

X N Z V C 
— ∗ ∗ ∗ 0 

Instruction Format(word form) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



Instruction Fields: 

Register field—Specifies any of the eight data registers; this field always specifies the
destination operand. 

Effective Address field—Specifies the source operand. Only data addressing modes
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004
Edited by Foxit PDF Editor

DIVU Unsigned Divide                           DIVU     

NOTE 

Overflow occurs if the quotient is larger than a 16-bit signed integer.
The instruction checks for overflow at the start of execution. If the upper
word of the dividend is greater than or equal to the divisor, the overflow 
bit is set, and the instruction terminates with the operands unchanged.
 



EOR Exclusive-OR Logical EOR 
Operation: Source ⊕  Destination → Destination 

Assembler 
Syntax: EOR Dn, < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Performs an exclusive-OR operation on the destination operand using the
source operand and stores the result in the destination location. The size of the
operation may be specified to be byte, word, or long. The source operand must be a
data register. The destination operand is specified in the effective address field. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format (word form): 

Instruction Fields: 
Register field—Specifies any of the eight data registers. 

Opmode field 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Byte Word Long Operation 
100 101 110 < ea > ⊕  Dn → < ea > 

Effective Address field—Specifies the destination operand. Only data addressing
can be used as listed in the following table: 

NOTE 

Memory-to-data-register operations are not allowed. Most
assemblers use EORI when the source is immediate data. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



EORI Exclusive-OR Immediate EORI 
Operation: Immediate Data ⊕  Destination → Destination 

Assembler 
Syntax: EORI # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Performs an exclusive-OR operation on the destination operand using the
immediate data and the destination operand and stores the result in the destination
location. The size of the operation may be specified as byte, word, or long. The size of
the immediate data matches the operation size. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

16-BIT WORD DATA 8-BIT BYTE DATA 

32-BIT LONG DATA 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00— Byte operation 
01— Word operation 
10— Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Immediate field—Data immediately following the instruction. 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is next two immediate words. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



EORI EORI 
to CCR Exclusive OR Immediate to CCR

to Condition Code 

Operation: Source ⊕  CCR → CCR 

Assembler 
Syntax: EORI # < data > ,CCR 

Attributes: Size = (Byte) 

Description: Performs an exclusive-OR operation on the condition code register using the
immediate operand and stores the result in the condition code register (low-order byte
of the status register). All implemented bits of the condition code register are affected. 

Condition Codes: 

X — Changed if bit 4 of immediate operand is one; unchanged otherwise. 
N — Changed if bit 3 of immediate operand is one; unchanged otherwise. 
Z — Changed if bit 2 of immediate operand is one; unchanged otherwise. 
V — Changed if bit 1 of immediate operand is one; unchanged otherwise. 
C — Changed if bit 0 of immediate operand is one; unchanged otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 8-BIT BYTE DATA 



EORI EORI 
to SR Exclusive OR Immediate to Status Register to SR

Operation: Source ⊕  SR → SR 

Assembler 
Syntax: EORI # < data > ,SR 

Attributes: Size = (Word) 

Description: Performs an exclusive OR operation on the status  register using the
immediate operand and stores the result in the status register. All implemented
bits of the status register are affected. 

Condition Codes: 

X — Changed if bit 4 of immediate operand is one; unchanged otherwise. 
N — Changed if bit 3 of immediate operand is one; unchanged otherwise. 
Z — Changed if bit 2 of immediate operand is one; unchanged otherwise. 
V — Changed if bit 1 of immediate operand is one; unchanged otherwise. 
C — Changed if bit 0 of immediate operand is one; unchanged otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

(Privileged Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 

16—BIT WORD DATA 



EXG Exchange Registers EXG 

Operation: Rx ←→ Ry 

Assembler EXG Dx,Dy 
Syntax: EXG Ax,Ay EXG Dx,Ay 

Attributes: Size = (Long) 

Description: Exchanges the contents of two 32-bit registers. The instruction performs three
types of exchanges. 

1. Exchange data registers. 

2. Exchange address registers. 

3. Exchange a data register and an address register. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Register Rx field—Specifies either a data register or an address register depending on
the mode. If the exchange is between data and address registers, this field always
specifies the data register. 

Opmode field—Specifies the type of exchange. 
01000—Data registers 
01001—Address registers 
10001—Data register and address register 

Register Ry field—Specifies either a data register or an address register depending on
the mode. If the exchange is between data and address registers, this field always
specifies the address register. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER Rx 1 OPMODE REGISTER Ry 



EXT Sign Extend EXT

Operation: Destination Sign-Extended → Destination 

Assembler EXT.W Dn     Extend byte to word 
Syntax: EXT.L  Dn     Extend word to long word 

Attributes: Size = (Word, Long) 

Description: Extends a byte in a data register to a word or a long word, or a word in a data
register to a long word, by replicating the sign bit to the left. If the operation extends a
byte to a word, bit 7 of the designated data register is copied to bits 15 – 8 of that data
register. If the operation extends a word to a long word, bit 15 of the designated data
register is copied to bits 31 – 16 of the data register.

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

Instruction Fields: 

Opmode field—Specifies the size of the sign-extension operation. 
010—Sign-extend low-order byte of data register to word. 
011— Sign-extend low-order word of data register to long. 

Register field—Specifies the data register is to be sign-extended. 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 OPMODE 0 0 0 REGISTER 



ILLEGAL Take Illegal Instruction Trap ILLEGAL

Operation: SSP – 4 → SSP; PC → (SSP); 
SSP – 2 → SSP; SR → (SSP); 
Illegal Instruction Vector Address → PC 

Assembler 
Syntax: ILLEGAL 

Attributes: Unsized 

Description: Forces an illegal instruction exception, vector number 4. All other illegal
instruction bit patterns are reserved for future extension of the instruction set and
should not be used to force an exception. 

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 



JMP Jump JMP 

Operation: Destination Address → PC 

Assembler 
Syntax: JMP < ea > 

Attributes: Unsized 

Description: Program execution continues at the effective address specified by the
instruction. The addressing mode for the effective address must be a control
addressing mode. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Field: 

Effective Address field—Specifies the address of the next instruction. Only control
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



JSR Jump to Subroutine JSR 

Operation: SP – 4 → SP; PC → (SP); Destination Address → PC 

Assembler 
Syntax: JSR < ea > 

Attributes: Unsized 

Description: Pushes the long-word address of the instruction immediately following the
JSR instruction onto the system stack. Program execution then continues at the
address specified in the instruction. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Field: 

Effective Address field—Specifies the address of the next instruction. Only control
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



LEA Load Effective Address LEA 

Operation:  < ea > → An 

Assembler 
Syntax: LEA < ea > ,An 

Attributes: Size = (Long) 

Description: Loads the effective address into the specified address register. All 32 bits of
the address register are affected by this instruction. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Register field—Specifies the address register to be updated with the effective address. 

Effective Address field—Specifies the address to be loaded into the address register.
Only control addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



LINK Link and Allocate LINK 

Operation: SP – 4 → SP; An → (SP); SP → An; SP + dn → SP 

Assembler 
Syntax: LINK An, # < displacement > 

Attributes: Size = Unsized

Description: Pushes the contents of the specified address register onto the stack. Then
loads the updated stack pointer into the address register. Finally, adds the
displacement value to the stack pointer. The address register occupies one long word
on the stack. The user should specify a negative displacement in order to allocate
stack area. 

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 1 0 REGISTER 

WORD DISPLACEMENT 

Instruction Fields: 

Register field—Specifies the address register for the link. 

Displacement field—Specifies the twos complement integer to be added to the stack
pointer. 

NOTE 

LINK and UNLK can be used to maintain a linked list of local data
and parameter areas on the stack for nested subroutine calls. 



LSL, LSR Logical Shift LSL, LSR 
Operation: Destination Shifted By Count → Destination 

Assembler LSd Dx,Dy 
Syntax: LSd # < data > ,Dy 

LSd < ea > 
where d is direction, L or R 

Attributes: Size = (Byte, Word, Long) 
Description: Shifts the bits of the operand in the direction specified (L or R). The carry bit

receives the last bit shifted out of the operand. The shift count for the shifting of a
register is specified in two different ways: 

1. Immediate—The shift count (1 – 8) is specified in the instruction. 

2. Register—The shift count is the value in the data register specified in the in-
struction modulo 64. 

The size of the operation for register destinations may be specified as byte, word, or
long. The contents of memory, < ea > , can be shifted one bit only, and the operand
size is restricted to a word. 

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count. Bits shifted out of the high-order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bit. 

.

The LSR instruction shifts the operand to the right the number of positions specified as
the shift count. Bits shifted out of the low-order bit go to both the carry and the extend
bits; zeros are shifted into the high-order bit. .

C OPERAND O

X

LSL:

O OPERAND C

X

LSR:

Condition Codes: 

X — Set according to the last bit shifted out of the operand; unaffected for a shift
count of zero. 

N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Set according to the last bit shifted out of the operand; cleared for a shift count

of zero. 

X N Z V C 
∗ ∗ ∗ 0 ∗  



LSL, LSR Logical Shift LSL, LSR 

Instruction Fields (Register Shifts): 
Count/Register field 

If i/r = 0, this field contains the shift count. The values 1 – 7 represent shifts of 1 – 7;
value of zero specifies a shift count of eight. 

If i/r = 1, the data register specified in this field contains the shift count (modulo 64). 

dr field—Specifies the direction of the shift. 
0 — Shift right 
1 — Shift left 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation i/r field 
If i/r = 0, specifies immediate shift count. 
If i/r = 1, specifies register shift count. 

Register field—Specifies a data register to be shifted. 

Instruction Format (Memory Shifts):

Instruction Fields (Memory Shifts): 

dr field—Specifies the direction of the shift. 
0 — Shift right 
1 — Shift left 

Effective Address field—Specifies the operand to be shifted. Only memory alterable
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 0 0 1 dr 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

Instruction Format (Register Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 0 1 REGISTER 



MOVE Move Data from Source to Destination MOVE 

Operation: Source → Destination 

Assembler 
Syntax: MOVE < ea > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Moves the data at the source to the destination location and sets the condition
codes according to the data. The size of the operation may be specified as byte, word,
or long. Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

Instruction Fields: 

Size field—Specifies the size of the operand to be moved. 
01 — Byte operation 
11 — Word operation 
10 — Long operation 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 SIZE
DESTINATION SOURCE 

REGISTER MODE MODE REGISTER 



MOVE Move Data from Source to Destination MOVE 

Destination Effective Address field—Specifies the destination location. Only data
alterable addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

Source Effective Address field—Specifies the source operand. All addressing modes
can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

*For byte size operation, address register direct is not allowed.

NOTE 

Most assemblers use MOVEA when the destination is an
address register. 

MOVEQ can be used to move an immediate 8-bit value to a data
register. 



MOVEA Move Address MOVEA 
Operation: Source → Destination 

Assembler 
Syntax: MOVEA < ea > ,An 

Attributes: Size = (Word, Long) 

Description: Moves the contents of the source to the destination address register. The size
of the operation is specified as word or long. Word-size source operands are sign-
extended to 32-bit quantities. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Size field—Specifies the size of the operand to be moved. 
11 — Word operation; the source operand is sign-extended to a long operand and

all 32 bits are loaded into the address register. 
10 — Long operation. 

Destination Register field—Specifies the destination address register. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 SIZE
DESTINATION

REGISTER
0 0 1

SOURCE 

MODE REGISTER 

Effective Address field—Specifies the location of the source operand. All addressing
modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



MOVE MOVE 
to CCR Move to Condition Code Register to CCR
Operation: Source → CCR 

Assembler 
Syntax: MOVE < ea > ,CCR 

Attributes: Size = (Word) 

Description: Moves the low-order byte of the source operand to the condition code register.
The upper byte of the source operand is ignored; the upper byte of the status register
is not altered. 

Condition Codes: 

X — Set to the value of bit 4 of the source operand. 
N — Set to the value of bit 3 of the source operand. 
Z — Set to the value of bit 2 of the source operand. 
V — Set to the value of bit 1 of the source operand. 
C — Set to the value of bit 0 of the source operand. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Field: 

Effective Address field—Specifies the location of the source operand. Only data
addressing modes can be used as listed in the following table: 

NOTE 

MOVE to CCR is a word operation. ANDI, ORI, and EORI to
CCR are byte operations. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



MOVE MOVE 
from SR Move from the Status Register from SR

Operation: SR → Destination 

Assembler 
Syntax: MOVE SR, < ea > 

Attributes: Size = (Word) 

Description: Moves the data in the status register to the destination location. The
destination is word length. Unimplemented bits are read as zeros. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



MOVE MOVE 
to SR Move to Status Register to SR

Operation: Source → SR

Assembler 
Syntax: MOVE < ea > ,SR 

Attributes: Size = (Word) 

Description: Moves the data in the source operand to the condition code register. The
The source operand is a word and all implemented bits of the status register are
affected.

Condition Codes: 

X — Set to the value of bit 4 of the source operand. 
N — Set to the value of bit 3 of the source operand. 
Z — Set to the value of bit 2 of the source operand. 
V — Set to the value of bit 1 of the source operand. 
C — Set to the value of bit 0 of the source operand. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

Instruction Field: 

Effective Address field—Specifies the location of the source operand. Only data
addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(Privileged Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 1 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



MOVE MOVE 
USP Move User Stack Pointer USP 

Operation: If Supervisor State 
Then USP → An or An → USP 

Else TRAP 

Assembler MOVE USP,An 
Syntax: MOVE An,USP 

Attributes: Size = (Long) 

Description: Moves the contents of the user stack pointer to or from the specified address
register. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

dr field—Specifies the direction of transfer. 
0—Transfer the address register to the user stack pointer. 
1—Transfer the user stack pointer to the address register. 

Register field—Specifies the address register for the operation. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 0 dr REGISTER 

(Privileged Instruction) 



MOVEM Move Multiple Registers MOVEM 
Operation: Registers → Destination; Source → Registers 

Assembler MOVEM < list > , < ea > 
Syntax: MOVEM < ea > , < list > 

Attributes: Size = (Word, Long) 

Description: Moves the contents of selected registers to or from consecutive memory
locations starting at the location specified by the effective address. A register is
selected if the bit in the mask field corresponding to that register is set. The instruction
size determines whether 16 or 32 bits of each register are transferred. In the case of a
word transfer to either address or data registers, each word is sign-extended to 32 bits,
and the resulting long word is loaded into the associated register. 

Selecting the addressing mode also selects the mode of operation of the MOVEM
instruction, and only the control modes, the predecrement mode, and the postincre-
ment mode are valid. If the effective address is specified by one of the control modes,
the registers are transferred starting at the specified address, and the address is incre-
mented by the operand length (2 or 4) following each transfer. The order of the regis-
ters is from D0 to D7, then from A0 to A7. 

If the effective address is specified by the predecrement mode, only a register-to-mem-
ory operation is allowed. The registers are stored starting at the specified address
minus the operand length (2 or 4), and the address is decremented by the operand
length following each transfer. The order of storing is from A7 to A0, then from D7 to
D0. When the instruction has completed, the decremented address register contains
the address of the last operand stored. For the MC68020, MC68030, MC68040, and
CPU32, if the addressing register is also moved to memory, the value written is the ini-
tial register value decremented by the size of the operation. The MC68000 and
MC68010 write the initial register value (not decremented). 

If the effective address is specified by the postincrement mode, only a memory-to-reg-
ister operation is allowed. The registers are loaded starting at the specified address;
the address is incremented by the operand length (2 or 4) following each transfer. The
order of loading is the same as that of control mode addressing. When the instruction
has completed, the incremented address register contains the address of the last oper-
and loaded plus the operand length. If the addressing register is also loaded from
memory, the memory value is ignored and the register is written with the postincre-
mented effective address. 

Condition Codes: 

Not affected. 
Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 dr 0 0 1 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

REGISTER LIST MASK 



MOVEM Move Multiple Registers MOVEM 
Instruction Fields: 

dr field—Specifies the direction of the transfer. 
0 — Register to memory. 
1 — Memory to register. 

Size field—Specifies the size of the registers being transferred. 
0 — Word transfer 
1 — Long transfer 

Effective Address field—Specifies the memory address for the operation. For register-
to-memory transfers, only control alterable addressing modes or the
predecrement addressing mode can be used as listed in the following table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

For memory-to-register transfers, only control addressing modes or the postincrement
addressing mode can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

Register List Mask field—Specifies the registers to be transferred. The low-order bit
corresponds to the first register to be transferred; the high-order bit corresponds
to the last register to be transferred. Thus, for both control modes and
postincrement mode addresses, the mask correspondence is: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 

For the predecrement mode addresses, the mask correspondence is reversed: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D0 D1 D2 D3 D4 D5 D6 D7 A0 A1 A2 A3 A4 A5 A6 A7 



MOVEP Move Peripheral Data MOVEP 
Operation: Source → Destination 

Assembler MOVEP Dx,(d16,Ay) 
Syntax: MOVEP (d16,Ay),Dx 

Attributes: Size = (Word, Long) 

Description: Moves data between a data register and alternate bytes within the address
space starting at the location specified and incrementing by two. The high-order byte
of the data register is transferred first, and the low-order byte is transferred last. The
memory address is specified in the address register indirect plus 16-bit displacement
addressing mode. This instruction was originally designed for interfacing 8-bit
peripherals on a 16-bit data bus, such as the MC68000 bus. Although supported by the
MC68020, MC68030, and MC68040, this instruction is not useful for those processors
with an external 32-bit bus. 

Example: Long transfer to/from an even address. 

Byte Organization in Register 

Byte Organization in 16-Bit Memory (Low Address at Top) 

31 24 23 16 15 8 7 0 

HIGH ORDER MID UPPER MID LOWER LOW ORDER 

15 8 7 0 

HIGH ORDER 

MID UPPER 

MID LOWER 

LOW ORDER 

Condition Codes:  Not affected. 

Instruction Format: 

Instruction Fields: 

Data Register field—Specifies the data register for the instruction. 

Opmode field—Specifies the direction and size of the operation. 
100—Transfer word from memory to register. 
101—Transfer long from memory to register. 
110— Transfer word from register to memory. 
111— Transfer long from register to memory. 

Address Register field—Specifies the address register which is used in the address
register indirect plus displacement addressing mode. 

Displacement field—Specifies the displacement used in the operand address. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 DATA REGISTER OPMODE 0 0 1 ADDRESS REGISTER 

16-BIT DISPLACEMENT 



MOVEQ Move Quick MOVEQ 

Operation: Immediate Data → Destination 

Assembler 
Syntax: MOVEQ # < data > ,Dn 

Attributes: Size = (Long) 

Description: Moves a byte of immediate data to a 32-bit data register. The data in an 8-bit
field within the operation word is sign- extended to a long operand in the data register
as it is transferred. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

Instruction Fields: 

Register field—Specifies the data register to be loaded. 

Data field—Eight bits of data, which are sign-extended to a long operand. 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 REGISTER 0 DATA 



MULS Signed Multiply MULS 
Operation: Source x Destination → Destination 

Assembler MULS.W < ea > ,Dn16 x 16 → 32 
Syntax:

Attributes: Size = (Word) 

Description: Multiplies two signed operands yielding a signed result. This instruction has a
word operand form and a long operand form. 

In the word form, the multiplier and multiplicand are both word operands, and the result
is a long-word operand. A register operand is the low-order word; the upper word of the
register is ignored. All 32 bits of the product are saved in the destination data register. 

In the long form, the multiplier and multiplicand are both long- word operands, and the
result is either a long word or a quad word. The long-word result is the low-order 32 bits
of the quad- word result; the high-order 32 bits of the product are discarded. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if overflow; cleared otherwise. 
C — Always cleared. 

X N Z V C 
— ∗ ∗ ∗ 0 

Instruction Format (word form): 

Instruction Fields: 
Register field—Specifies a data register as the destination. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

Effective Address field—Specifies the source operand. Only data addressing modes
can be used as listed in the following table: 



MULU Unsigned Multiply MULU 
Operation: Source x Destination → Destination 

Assembler MULU.W < ea > ,Dn16 x 16 → 32 
Syntax:

Attributes: Size = (Word) 

Description: Multiplies two unsigned operands yielding an unsigned result. This instruction
has a word operand form and a long operand form. 

In the word form, the multiplier and multiplicand are both word operands, and the result
is a long-word operand. A register operand is the low-order word; the upper word of the
register is ignored. All 32 bits of the product are saved in the destination data register. 

In the long form, the multiplier and multiplicand are both long- word operands, and the
result is either a long word or a quad word. The long-word result is the low-order 32 bits
of the quad- word result; the high-order 32 bits of the product are discarded. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if overflow; cleared otherwise. 
C — Always cleared. 

X N Z V C 
— ∗ ∗ ∗ 0 

Instruction Format (word form): 

Instruction Fields: 
Register field—Specifies a data register as the destination. 

Effective Address field—Specifies the source operand. Only data addressing modes
can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



NBCD Negate Decimal with Extend NBCD 
Operation: 0 – Destination10 – X → Destination 

Assembler 
Syntax: NBCD < ea > 

Attributes: Size = (Byte) 

Description: Subtracts the destination operand and the extend bit from zero. The operation
is performed using binary-coded decimal arithmetic. The packed binary-coded decimal
result is saved in the destination location. This instruction produces the tens
complement of the destination if the extend bit is zero or the nines complement if the
extend bit is one. This is a byte operation only. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Undefined. 
Z — Cleared if the result is nonzero; unchanged otherwise. 
V — Undefined. 
C — Set if a decimal borrow occurs; cleared otherwise. 

NOTE 

Normally the Z condition code bit is set via programming before
the start of the operation. This allows successful tests for zero
results upon completion of multiple-precision operations. 

X N Z V C 
∗ U ∗ U ∗  

Instruction Format (word form): 

Instruction Fields: 
Register field—Specifies a data register as the destination. 

Effective Address field—Specifies the source operand. Only data addressing modes
can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



NEG Negate NEG 
Operation: 0 – Destination → Destination 

Assembler 
Syntax: NEG < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the destination operand from zero and stores the result in the
destination location. The size of the operation is specified as byte, word, or long. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Cleared if the result is zero; set otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



NEGX Negate with Extend NEGX 
Operation: 0 – Destination – X → Destination 

Assembler 
Syntax: NEGX < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the destination operand and the extend bit from zero. Stores the
result in the destination location. The size of the operation is specified as byte, word,
or long. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Cleared if the result is nonzero; unchanged otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a borrow occurs; cleared otherwise. 

NOTE 
Normally the Z condition code bit is set via programming before
the start of the operation. This allows successful tests for zero
results upon completion of multiple-precision operations. 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

Instruction Format: 

Instruction Fields: 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



NOP No Operation NOP 

Operation: None 

Assembler 
Syntax: NOP 

Attributes: Unsized 

Description: Performs no operation. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP instruction.

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 



NOT Logical Complement NOT 
Operation: ~ Destination → Destination 

Assembler 
Syntax: NOT < ea > 

Attributes: Size = (Byte, Word, Long) 

Description:Calculates the ones complement of the destination operand and stores the
result in the destination location. The size of the operation is specified as byte, word,
or long. 

Condition Codes: 

X — Not affected. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00— Byte operation 
01— Word operation 
10— Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



OR Inclusive OR Logical OR 
Operation: Source V Destination → Destination 

Assembler OR < ea > ,Dn 
Syntax: OR Dn, < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Performs an inclusive-OR operation on the source operand and the
destination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The contents of an address register may
not be used as an operand. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

Instruction Fields: 

Register field—Specifies any of the eight data registers. 

Opmode field 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Byte Word Long Operation 
000 001 010 < ea > V Dn → Dn 
100 101 110 Dn V < ea > → < ea > 



OR Inclusive OR Logical OR 
Effective Address field—If the location specified is a source operand, only data

addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

If the location specified is a destination operand, only memory alterable addressing
modes can be used as listed in the following table: 

NOTE 

If the destination is a data register, it must be specified using the
destination Dn mode, not the destination < ea > mode. 

Most assemblers use ORI when the source is immediate data. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ORI Inclusive-OR ORI 
Operation: Immediate Data V Destination → Destination 

Assembler 
Syntax: ORI # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Performs an inclusive-OR operation on the immediate data and the
destination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The size of the immediate data matches
the operation size. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

16-BIT WORD DATA 8-BIT BYTE DATA 

32-BIT LONG DATA 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00— Byte operation 
01— Word operation 
10— Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Immediate field—Data immediately following the instruction. 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ORI ORI 
to CCR Inclusive OR Immediate to CCR 

to Condition Codes 

Operation: Source V CCR → CCR 

Assembler 
Syntax: ORI # < data > ,CCR 

Attributes: Size = (Byte) 

Description: Performs an inclusive-OR operation on the immediate operand and the
condition codes and stores the result in the condition code register (low-order byte of
the status register). All implemented bits of the condition code register are affected. 

Condition Codes: 

X — Set if bit 4 of immediate operand is one; unchanged otherwise. 
N — Set if bit 3 of immediate operand is one; unchanged otherwise. 
Z — Set if bit 2 of immediate operand is one; unchanged otherwise. 
V — Set if bit 1 of immediate operand is one; unchanged otherwise. 
C — Set if bit 0 of immediate operand is one; unchanged otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 8-BIT BYTE DATA 



ORI ORI 
to SR Inclusive OR Immediate to the Status Register to SR 

Operation: If Supervisor State 
Then Source V SR → SR 

Else TRAP 

Assembler 
Syntax: ORI # < data > ,SR 

Attributes: Size = (Word) 

Description: Performs an inclusive-OR operation of the immediate operand and the status
register’s contents and stores the result in the status register. All implemented bits of
the status register are affected. 

Condition Codes: 

X—Set if bit 4 of immediate operand is one; unchanged otherwise. 

N—Set if bit 3 of immediate operand is one; unchanged otherwise. 

Z—Set if bit 2 of immediate operand is one; unchanged otherwise. 

V—Set if bit 1 of immediate operand is one; unchanged otherwise. 

C—Set if bit 0 of immediate operand is one; unchanged otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗ 

(Privileged Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 

16—BIT WORD DATA 



PEA Push Effective Address PEA 

Operation: SP – 4 → SP; < ea > → (SP) 

Assembler 
Syntax: PEA < ea > 

Attributes: Size = (Long) 

Description: Computes the effective address and pushes it onto the stack. The effective
address is a long address. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Field: 

Effective Address field—Specifies the address to be pushed onto the stack. Only
control addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



RESET Reset External Devices RESET 

Operation: If Supervisor State 
Then Assert RESET  Line 

Else TRAP 

Assembler 
Syntax: RESET 

Attributes: Unsized 

Description: Asserts the RESET signal for 124 clock periods, resetting all external
external devices. The processor state, other than the program counter, is unaffected
and execution continues with the next instruction.

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 



ROL, ROR Rotate (Without Extend) ROL, ROR 
Operation: Destination Rotated By < count > → Destination 

Assembler ROd Dx,Dy 
Syntax: ROd # < data > ,Dy ROd < ea > where d is direction, L or R 

Attributes: Size = (Byte, Word, Long) 

Description: Rotates the bits of the operand in the direction specified (L or R). The extend
bit is not included in the rotation. The rotate count for the rotation of a register is
specified in either of two ways: 

1. Immediate—The rotate count (1 – 8) is specified in the instruction. 

2. Register—The rotate count is the value in the data register specified in the in-
struction, modulo 64. 

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, (ROd < ea > ), can be rotated one bit only, and operand size
is restricted to a word. 

The ROL instruction rotates the bits of the operand to the left; the rotate count deter-
mines the number of bit positions rotated. Bits rotated out of the high-order bit go to the
carry bit and also back into the low-order bit. 

.

The ROR instruction rotates the bits of the operand to the right; the rotate count deter-
mines the number of bit positions rotated. Bits rotated out of the low-order bit go to the
carry bit and also back into the high-order bit. 

.

OPERANDC

ROL:

OPERAND C

ROR:

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Set according to the last bit rotated out of the operand; cleared when the rotate

count is zero. 

Instruction Format (Register Rotate): 

X N Z V C 
— ∗ ∗ 0 ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 1 1 REGISTER 



ROL,ROR Rotate (Without Extend) ROL,ROR 
Instruction Fields (Register Rotate): 

Count/Register field: 
If i/r = 0, this field contains the rotate count. The values 1 – 7 represent counts of 1 

– 7, and zero specifies a count of eight. 
If i/r = 1, this field specifies a data register that contains the rotate count (modulo 64). 

dr field—Specifies the direction of the rotate. 
0 — Rotate right 
1 — Rotate left 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

i/r field—Specifies the rotate count location. 
If i/r = 0, immediate rotate count. 
If i/r = 1, register rotate count. 

Register field—Specifies a data register to be rotated. 

Instruction Format (Memory Rotate): 

Instruction Fields (Memory Rotate): 
dr field—Specifies the direction of the rotate. 

0 — Rotate right 
1 — Rotate left 

Effective Address field—Specifies the operand to be rotated. Only memory alterable
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 0 1 1 dr 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



ROXL, ROXR Rotate with Extend ROXL, ROXR 
Operation: Destination Rotated With X By Count → Destination 

Assembler ROXd Dx,Dy 
Syntax: ROXd # < data > ,Dy 

ROXd < ea > 
where d is direction, L or R 

Attributes: Size = (Byte, Word, Long) 

Description: Rotates the bits of the operand in the direction specified (L or R). The extend
bit is included in the rotation. The rotate count for the rotation of a register is specified
in either of two ways: 

1. Immediate—The rotate count (1 – 8) is specified in the instruction. 

2. Register—The rotate count is the value in the data register specified in the in-
struction, modulo 64. 

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, < ea > , can be rotated one bit only, and operand size is
restricted to a word. The ROXL instruction rotates the bits of the operand to the left; the
rotate count determines the number of bit positions rotated. Bits rotated out of the high-
order bit go to the carry bit and the extend bit; the previous value of the extend bit
rotates into the low-order bit. 

.

The ROXR instruction rotates the bits of the operand to the right; the rotate count deter-
mines the number of bit positions rotated. Bits rotated out of the low-order bit go to the
carry bit and the extend bit; the previous value of the extend bit rotates into the high-
order bit. 

.

C OPERAND XROXL:

X OPERAND CROXR:

Condition Codes: 

X — Set to the value of the last bit rotated out of the operand; unaffected when the
rotate count is zero. 

N — Set if the most significant bit of the result is set; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Always cleared. 
C — Set according to the last bit rotated out of the operand; when the rotate count is

zero, set to the value of the extend bit. 
Instruction Format (Register Rotate): 

X N Z V C 
∗ ∗ ∗ 0 ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 1 0 REGISTER 



ROXL, ROXR Rotate with Extend ROXL, ROXR 
Instruction Fields (Register Rotate): 

Count/Register field: 
If i/r = 0, this field contains the rotate count. The values 1 – 7 represent counts of 1 

– 7, and zero specifies a count of eight. 
If i/r = 1, this field specifies a data register that contains the rotate count (modulo 64). 

dr field—Specifies the direction of the rotate. 
0 — Rotate right 
1 — Rotate left 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

i/r field—Specifies the rotate count location. 
If i/r = 0, immediate rotate count. 
If i/r = 1, register rotate count. 

Register field—Specifies a data register to be rotated. 

Instruction Format (Memory Rotate): 

Instruction Fields (Memory Rotate): 
dr field—Specifies the direction of the rotate. 

0 — Rotate right 
1 — Rotate left 

Effective Address field—Specifies the operand to be rotated. Only memory alterable
addressing modes can be used as listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 0 1 0 dr 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



RTE Return from Exception RTE 

Operation: If Supervisor State 
Then (SP) → SR; SP + 2 → SP; (SP) → PC; SP + 4 → SP; Restore
State and Deallocate Stack According to (SP) 

Else TRAP 

Assembler 
Syntax: RTE 

Attributes: Unsized 

Description: Loads the processor state information stored in the exception stack frame
located at the top of the stack into the processor.

Condition Codes: 

Set according to the condition code bits in the status register value restored from the
stack. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 

(Privileged Instruction) 



RTR Return and Restore Condition Codes RTR 

Operation: (SP) → CCR; SP + 2 → SP; (SP) → PC; SP + 4 → SP 

Assembler 
Syntax: RTR 

Attributes: Unsized 

Description: Pulls the condition code and program counter values from the stack. The
previous condition code and program counter values are lost. The supervisor portion
of the status register is unaffected. 

Condition Codes: 

Set to the condition codes from the stack. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 



RTS Return from Subroutine RTS 

Operation: (SP) → PC; SP + 4 → SP 

Assembler 
Syntax: RTS 

Attributes: Unsized 

Description: Pulls the program counter value from the stack. The previous program counter
value is lost. 

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 



SBCD Subtract Decimal with Extend SBCD 
Operation: Destination10 – Source10 – X → Destination 

Assembler SBCD Dx,Dy 
Syntax: SBCD – (Ax), – (Ay) 

Attributes: Size = (Byte) 

Description: Subtracts the source operand and the extend bit from the destination operand
and stores the result in the destination location. The subtraction is performed using
binary-coded decimal arithmetic; the operands are packed binary-coded decimal
numbers. The instruction has two modes: 

1. Data register to data register—the data registers specified in the instruction con-
tain the operands. 

2. Memory to memory—the address registers specified in the instruction access 
the operands from memory using the predecrement addressing mode. 

This operation is a byte operation only. 

Condition Codes: 

X — Set the same as the carry bit. 
N — Undefined. 
Z — Cleared if the result is nonzero; unchanged otherwise. 
V — Undefined. 
C — Set if a borrow (decimal) is generated; cleared otherwise. 

NOTE 
Normally the Z condition code bit is set via programming before
the start of an operation. This allows successful tests for zero
results upon completion of multiple-precision operations. 

X N Z V C 
∗ U ∗ U ∗  

Instruction Format: 

Instruction Fields: 
Register Dy/Ay field—Specifies the destination register. 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

R/M field—Specifies the operand addressing mode. 
0 — The operation is data register to data register. 
1 — The operation is memory to memory. 

Register Dx/Ax field—Specifies the source register. 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 REGISTER Dy/Ay 1 0 0 0 0 R/M REGISTER Dx/Ax



Scc Set According to Condition Scc 
Operation: If Condition True 

Then 1s → Destination 
Else 0s → Destination 

Assembler 
Syntax: Scc < ea > 

Attributes: Size = (Byte) 

Description: Tests the specified condition code; if the condition is true, sets the byte
specified by the effective address to TRUE (all ones). Otherwise, sets that byte to
FALSE (all zeros). Condition code cc specifies one of the following conditions:

Condition Codes: Not affected. 

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

F False NE Not Equal

GE Greater or Equal PL Plus

GT Greater Than T True

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set

Instruction Format: 

Instruction Fields: 
Condition field—The binary code for one of the conditions listed in the table. 
Effective Address field—Specifies the location in which the TRUE/FALSE byte is to be

stored. Only data alterable addressing modes can be used as listed in the
following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 CONDITION 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



STOP Load Status Register and Stop STOP 

Operation: If Supervisor State 
Then Immediate Data → SR; STOP 

Else TRAP 

Assembler 
Syntax: STOP # < data > 

Attributes: Unsized 

Description: Moves the immediate operand into the status register (both user and
supervisor portions), advances the program counter to point to the next instruction, and
stops the fetching and executing of instructions. A trace, interrupt, or reset exception
causes the processor to resume instruction execution. A trace exception occurs if
instruction tracing is enabled (T0 = 1, T1 = 0) when the STOP instruction begins
execution. If an interrupt request is asserted with a priority higher than the priority level
set by the new status register value, an interrupt exception occurs; otherwise, the
interrupt request is ignored. External reset always initiates reset exception processing. 

Condition Codes: 

Set according to the immediate operand. 

Instruction Format: 

Instruction Fields: 

Immediate field—Specifies the data to be loaded into the status register. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 

IMMEDIATE DATA 

(Privileged Instruction) 



SUB Subtract SUB 

Operation: Destination – Source → Destination 

Assembler SUB < ea > ,Dn 
Syntax: SUB Dn, < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the source operand from the destination operand and stores the
result in the destination. The size of the operation is specified as byte, word, or long.
The mode of the instruction indicates which operand is the source, which is the
destination, and which is the operand size. 

Condition Codes: 

X — Set to the value of the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow is generated; cleared otherwise. 
C — Set if a borrow is generated; cleared otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 

Register field—Specifies any of the eight data registers. 

Opmode field 

Byte Word Long Operation 
000 001 010 Dn – < ea > → Dn 
100 101 110 < ea > – Dn → < ea > 



SUB Subtract SUB 

Effective Address field—Determines the addressing mode. If the location specified is a
source operand, all addressing modes can be used as listed in the following
table: 

*For byte-sized operation, address register direct is not allowed.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

If the location specified is a destination operand, only memory alterable addressing
modes can be used as listed in the following table: 

NOTE 

If the destination is a data register, it must be specified as a
destination Dn address, not as a destination < ea > address. 

Most assemblers use SUBA when the destination is an address
register and SUBI or SUBQ when the source is immediate data. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



SUBA Subtract Address SUBA 

Operation: Destination – Source → Destination 

Assembler 
Syntax: SUBA < ea > ,An 

Attributes: Size = (Word, Long) 

Description: Subtracts the source operand from the destination address register and stores
the result in the address register. The size of the operation is specified as word or long.
Word-sized source operands are sign-extended to 32-bit quantities prior to the
subtraction. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Register field—Specifies the destination, any of the eight address registers. 

Opmode field—Specifies the size of the operation. 
011— Word operation. The source operand is sign-extended to a long operand and

the operation is performed on the address register using all 32 bits. 
111— Long operation. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



SUBI Subtract Immediate SUBI 

Operation: Destination – Immediate Data → Destination 

Assembler 
Syntax: SUBI # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the immediate data from the destination operand and stores the
result in the destination location. The size of the operation is specified as byte, word,
or long. The size of the immediate data matches the operation size. 

Condition Codes: 

X — Set to the value of the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a borrow occurs; cleared otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

16-BIT WORD DATA 8-BIT BYTE DATA 

32-BIT LONG DATA 

Instruction Fields: 
Size field—Specifies the size of the operation. 

00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following table: 

Immediate field—Data immediately following the instruction. 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



SUBQ Subtract Quick SUBQ 
Operation: Destination – Immediate Data → Destination 

Assembler 
Syntax: SUBQ # < data > , < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the immediate data (1 – 8) from the destination operand. The size
of the operation is specified as byte, word, or long. Only word and long operations can
be used with address registers, and the condition codes are not affected. When
subtracting from address registers, the entire destination address register is used,
despite the operation size. 

Condition Codes: 

X — Set to the value of the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a borrow occurs; cleared otherwise. 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 DATA 1 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Data field—Three bits of immediate data; 1 – 7 represent immediate values of 1 – 7,

and zero represents eight. 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the destination location. Only alterable addressing
modes can be used as listed in the following table: 

*Word and long only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



SUBX Subtract with Extend SUBX 
Operation: Destination – Source – X → Destination 

Assembler SUBX Dx,Dy 
Syntax: SUBX – (Ax), – (Ay) 

Attributes: Size = (Byte, Word, Long) 

Description: Subtracts the source operand and the extend bit from the destination operand
and stores the result in the destination. The instruction has two modes:  

1. Data register to data register—the data registers specified in the instruction con-
tain the operands. 

2. Memory to memory—the address registers specified in the instruction access 
the operands from memory using the predecrement addressing mode. 

The size of the operand is specified as byte, word, or long. 

Condition Codes: 

X — Set to the value of the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Cleared if the result is nonzero; unchanged otherwise. 
V — Set if an overflow occurs; cleared otherwise. 
C — Set if a borrow occurs; cleared otherwise. 

NOTE 
Normally the Z condition code bit is set via programming before
the start of an operation. This allows successful tests for zero
results upon completion of multiple-precision operations. 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

Instruction Format: 

Instruction Fields: 
Register Dy/Ay field—Specifies the destination register. 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

R/M field—Specifies the operand addressing mode. 
0 — The operation is data register to data register. 
1 — The operation is memory to memory. 

Register Dx/Ax field—Specifies the source register: 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER Dy/Ay 1 SIZE 0 0 R/M REGISTER Dx/Ax 



SWAP Swap Register Halves SWAP 

Operation: Register 31 – 16 ←→ Register 15 – 0 

Assembler 
Syntax: SWAP Dn 

Attributes: Size = (Word) 

Description: Exchange the 16-bit words (halves) of a data register. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the 32-bit result is set; cleared otherwise. 
Z — Set if the 32-bit result is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

Instruction Field: 

Register field—Specifies the data register to swap. 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 1 0 0 0 REGISTER 



TAS Test and Set an Operand TAS 

Operation: Destination Tested → Condition Codes; 1 → Bit 7 of Destination 

Assembler 
Syntax: TAS < ea > 

Attributes: Size = (Byte) 

Description: Tests and sets the byte operand addressed by the effective address field. The
instruction tests the current value of the operand and sets the N and Z condition bits
appropriately. TAS also sets the high-order bit of the operand. The operation uses a
locked or read-modify-write transfer sequence. This instruction supports use of a flag
or semaphore to coordinate several processors. 

Condition Codes: 

X — Not affected. 
N — Set if the most significant bit of the operand is currently set; cleared otherwise. 
Z — Set if the operand was zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field—Specifies the location of the tested operand. Only data

alterable addressing modes can be used as listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



TRAP Trap TRAP 

Operation: 1 → S-Bit of SR 
SSP – 4 → SSP; PC → (SSP); SSP – 2 → SSP; 
SR → (SSP); Vector Address → PC 

Assembler 
Syntax: TRAP # < vector > 

Attributes: Unsized 

Description: Causes a TRAP # < vector > exception. The instruction adds the immediate
operand (vector) of the instruction to 32 to obtain the vector number. The range of
vector values is 0 – 15, which provides 16 vectors. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Fields: 

Vector field—Specifies the trap vector to be taken. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 0 VECTOR 



TRAPV Trap on Overflow TRAPV 

Operation: If V then TRAP 

 Assembler 
Syntax: TRAPV 

Attributes: Unsized 

Description: If the overflow condition is set, causes a TRAPV exception with a vector
number 7. If the overflow condition is not set, the processor performs no operation and
execution continues with the next instruction. 

Condition Codes: 

Not affected. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 



TST Test an Operand TST 

Operation: Destination Tested → Condition Codes 

Assembler 
Syntax: TST < ea > 

Attributes: Size = (Byte, Word, Long) 

Description: Compares the operand with zero and sets the condition codes according to
the results of the test. The size of the operation is specified as byte, word, or long. 

Condition Codes: 

X — Not affected. 
N — Set if the operand is negative; cleared otherwise. 
Z — Set if the operand is zero; cleared otherwise. 
V — Always cleared. 
C — Always cleared. 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 

Size field—Specifies the size of the operation. 
00 — Byte operation 
01 — Word operation 
10 — Long operation 

Effective Address field—Specifies the addressing mode for the destination operand as
listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

An — — (xxx).L 111 001



UNLK Unlink UNLK 

Operation: An → SP; (SP) → An; SP + 4 → SP 

Assembler 
Syntax: UNLK An 

Attributes: Unsized 

Description: Loads the stack pointer from the specified address register, then loads the
address register with the long word pulled from the top of the stack. 

Condition Codes: 

Not affected. 

Instruction Format: 

Instruction Field: 

Register field—Specifies the address register for the instruction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 1 1 REGISTER 


	MC68000 Instruction Set
	Operands and Nottaional Conventions
	ABCD Add Decimal with Extend
	ADD Add
	ADDA Add Address
	ADDI Add Immediate
	ADDQ Add Quick
	ADDX Add Extended
	AND AND logical
	ANDI AND Immediate
	ANDI to CCR AND immediate to Condition Codes
	ANDI to SR  AND Immediate to the Status Register
	ASL,ASR Aritthmetic Shift
	Bcc Branch Conditionally
	BCHG Test a Bit and Change
	BCLR Test a Bit and Clear
	BRA Branch Always
	BSET Test a Bit and Set
	BSR Branch to Soubroutine
	BTST Test a Bit
	CHK Check Register Against bgounds
	CLR Clear an Operand
	CMP Compare
	CMPA Compare Address
	CMPI Compare Immediate
	CMPM Compare Memory
	DBcc Test Condition, Decrement, and Branch
	DIVS Signed Divide
	DIVU Unsigned Divide
	EOR Exclusive-OR Logical
	EORI Exclusive-OR Immediate
	EORI to CCR Exclusive OR Immediate to Condition Code
	EORI to SR Exclusive OR uimmediate to Status Register
	EXG Exchange Registers
	EXT Sign Extend
	ILLEGAL Take Illegal Instruction Trap
	JMP Jump
	JSR Jump to Soubroutine
	LEA Load Effective Address
	LINK Link and Allocate
	LSl,LSR Logical Shift
	MOVE Move Data from Source to Destination
	MOVEA Move Address
	MOVE to CCR Move to Condition Code register
	MOVE to SR Move from the Status Register
	MOVE USP Move User Stack Pointer
	MOVEM Move multiple Registers
	MOVEP Move Peripheral Data
	MOVEQ Move Quick
	MULS Signed Multiply
	MULU Unsigned Multiply
	NBCD Negate Decimal with Extend
	NEG Negate
	NEGX Negate with Extend
	NOP No Operation
	NOT Logical Complement
	OR Inclusive OR Logical
	ORI Inclusive-OR
	ORI to CCR Inclusive OR Immediate to Condition Codes
	ORI to SR Inclusive OR Immediate to the Status Register
	PEA Push Effective Address
	RESET Reset External Devices
	ROl,ROR Rotate (Without Extend)
	ROXL,ROXR Rotate with Extend
	RTE Return from Exception
	RTR Return and Store Condition Codes
	RTS Return from Soubroutine
	SBCD Substract Decimal with Extend
	Scc Set According to Condition
	STOP load Status Register and Stop
	SUB Subtract
	SUBA Subtract Address
	SUBI Subtract Immediate
	SUBQ Subtract Quick
	SUBX Subtract with Extend
	SWAP Swap Register Halves
	TAS Test and Set an Operand
	TRAP Trap
	TRAPV Trap on Overflow
	TST Test an Operand
	UNLK Unlink

