Assembly Language Programming
on the TRS-80 MC-10

Using the Virtual MC-10
and the TASM compiler

Getting Started

* Pre-requisites for the tutorial.

Virtual MC-10 version 0.7 or higher

Familiarity with MICROCOLOR BASIC 1.0
(this is the basic that comes with the MC-10)

Basic knowledge of “hexadecimal numbers”

A text editor. This tutorial uses the

“Notepad” editor that comes bundled with
Microsoft Windows.

Getting Started

« Download the Virtual MC-10

1. As of 2008, the emulator can be found at
http://www.geocities.com/emucompboy.

2. Find and download the “Virtual MC-10"

3. Follow any additional installation instructions
that come with the emulator

4. A good book on assembly is helpful, but
hopefully not required. | found William
Barden Jr.'s “Assembly Language on the
TRS-80 Color Computer” to be very helpful.

Hexadecimal Numbers

Good tutorials exist on the web for hexadecimal
numbers.

The Virtual MC-10 and the bundled TASM compiler use
a “$” pre-fix to distinguish a hexadecimal representation
of a number from its decimal equivalent.

The tutorials slowly introduce hexadecimal (and binary)
numbers over time.

The sections involving the video display modes and
memory map use hexadecimal numbers almost
exclusively.

The Virtual MC-10 debug windows displays information
primarily with hexadecimal numbers, but usually also
displays their decimal equivalents.

Other Material

A good book on assembly is helpful, but
hopefully not required.

I 11

William Barden Jr.’s “Assembly Language
Programming on the TRS-80 Color Computer
covers the MC-10’s “big brother” (the
MC6809E processor found in the CoCo).

You may also find good information if you
search for “6800 assembly tutorial” on the
internet. The MC-10 uses a 6801 processor,
which has only a few additional instructions.

J

MC-10 Hardware

The CPU: (Motorola MC6803)
A video display chip (Motorola MC6847)

On board memory shared between the MC6803
and MC6847) totalling 4K

An input/ouput buffer to control the RS232-C
port and cassette port.

A latch to control the TV's speaker
An expansion bus accessible by the CPU

The infamous “rubber chicklet” (a.k.a. “rubber
chicken™) keyboard.

MC-10 Memory Map

Address

Component

$00-$FF

$0100-$03FF

On-chip RAM

$4000-$4FFF

4K Video RAM

$5000-$8FFF

16K Expansion

$9000-$BFFF

Video/Sound

Control

$C000-$DFFF

Mirror of ROM

$EO000-$FFFF

BASIC ROM

On-Chip Memory

Address Function Description
$00 |Port 1 Data Direction Reqister| Enables Keyboard (Set to 255)
$01 |Port 2 Data Direction Register| Enables Keyboard (Set to 255)

$02 Port 1 Data Reqister Keystrobe
503 Port 2 Data Reaqister Keystrobe
$04-$07 Unused

$08 Timer Control and Status Working!
$09-$0A 16-bit counter Working!
$0B-$0C| Output Compare Regqister Working!
b0D-$0E Input Capture Register Not emulated by VMC-10
SOF Unused
$10 Rate and Mode Control Not emulated by VMC-10
$11 Transceiver Control/Status Not emulated by VMC-10
$12 Receive Data Not emulated by VMC-10
$13 Transmit Data Not emulated by VMC-10
$14 RAM Control Register Not emulated by VMC-10

i15-i1F Internal Reiisters Not emulated bi' VMC-10
$20-$7F Unused

$80-$FF User RAM Heavily used by BASIC

49151
($BFFF)

Video/Sound Control

7 6 5 4 3 2 1 0
Sound | CSS AlG GMO GM1 GM2 N/C N/C
INT/EXT

« Operation is controlled by writing to any memory location between $9000-

$BFFF (36864-49151).
« The convention used by MC-10 programmers was to use $BFFF. This

would have allowed programs to be backwards-compatible on any future

version of the MC-10.
« The speaker is energized / de-energized by setting bit 7 of the control

register.

« The remaining bits controls the various graphics mode of the MC6847 chip.
(we will cover the graphics modes in a later section)

6803 Registers

A B
A A
a ' I
15 8 7
D
15
X
15
S
15
PC
CCR |1|1[H|I|N|Z|V|C

Accumulator

15 0

Register D is known as the “double accumulator”
It a 16-bit register on which you can perform addition/subtraction.
You can also shift it left or right.

Register D is broken up into two eight bit registers:

A, the “high" byte

B, the “low” byte

You can perform any arithmetic or bitwise operation on the 8-bit registers
Unsigned multiplication of A with B can be performed, the result is stored
in-place in the D register. There are no division instructions.

6803 Registers

Register X is a 16-bit register which contains an address
you can read from or write to.

You can also add a constant positive 8-bit offset to it and compare it
with other 16-bit values.

6803 Registers

15 0

Register S is known as the stack pointer.

It is intended to contain an address to a contiguous section of memory
known as the stack. The stack can only grow or shrink in size from one
end. You can “push” or “pull” information from the top of the stack.

The stack is primarily used to keep track of subroutine addresses,
local variables, or temporary storage.

6803 Registers

15 0

PC

Register PC is the program counter

It contains the address of the next instruction to be executed.

6803 Registers

CCR [1|1|H| I [N|Z|V|C

Register CCR is the 8-bit condition code register.

The two most significant bits are always set to one.
The other six bits are updated after every instruction to contain status information.

Half-carry - facilitates binary coded decimal arithmetic
It is used by the DAA instruction.
sInterrupt - prevents the timers from redirecting the PC
counter to a different code segment
*Negative - indicates that a negative result occurred.
«Zero - indicates that the result of the last instruction was zero.
-oVerflow - indicates that the result could not be fit into an 8-bit signed number.
«Carry - indicates that the result could not be fit into an 8-bit unsigned number.

aba
abx
adca
adcb
adda
addb
addd
anda
andb
asr
asra
asrb

bita
bitb
bsr

beq
bne
bcc
bcs
bhi
bhs
blo
bls
bge
bgt
ble
blt
bmi
bpl
bvc
bvs

6803 Instructions

bra
brn

cba
clc
cli
clr
clra
clrb
clv
cmpa
cmpb
CpX
com
coma
comb

daa
dec
deca
decb
des
dex

eora
eorb

inc
inca
incb
ins
inX

jmp
jsr

|daa
|dab
|dd
|ds
|dx
sl
Isla
Islb
Isld
Isr
Isra
Isrb
Isrd

mul

neg
nega
negb
nop

oraa
orab

psha
pshb
pshx

pula
pulb
pulx

rol
rola
rolb
ror
rora
rorb
rti
rts

sba
sbca
sbcb
sec
sei
sev

staa
stab
std
sts
stx
suba
subb
subd
SWi

tab
tap
tba
tpa
(5)¢
txs

tst
tsta
tstb

wai

Addressing Modes

Syntax Mode Instruction Size (bytes)
<opcode> (inherent) 1 byte
<opcode> #value (immediate) 1 byte + 1 or 2 byte value
<opcode> address (direct) 1 byte + 1 byte address
<opcode> address (extended) 1 byte + 2 byte address
<opcode> offset,x (indexed) 1 byte + 1 byte offset
<branch op> address (relative) 1 byte + 1 byte offset
Inherent - does not take an operand
Immediate - operand as data
Direct - operand as address to on-chip memory (<256)
Extended - operand as an address to off-chip memory (>255)
Indexed - add positive single byte offset to x, use result

as address
Relative - operand as an address up to 128 bytes before or 127 bytes

after the next instruction.

Cycle Counting

* Indexed and extended instructions will
take the same number of clock cycles.

* Direct addressing instructions take one

clock cycle less than either indexed or
extended instructions.

* Immediate addressing instructions take
one less cycle than direct addressing.

aba
abx
adca
adcb
adda
addb
addd
anda
andb
asr
asra
asrb

bita
bitb
bsr

Tutorial #1 — load/store

beq
bne
bcc
bcs
bhi
bhs
blo
bls
bge
bgt
ble
blt
bmi
bpl
bvc
bvs

bra
brn

cba
clc
cli
clr
clra
clrb
clv
cmpa
cmpb
CpX
com
coma
comb

daa
dec
deca
decb
des
dex

eora
eorb

inc
inca
incb
ins
inX

lygle
jsr

|daa
|dab
|dd
|ds
|dx
sl
Isla
Islb
Isld
Isr
Isra
Isrb
Isrd

mul

neg
nega
negb
nop

oraa
orab

psha
pshb
pshx

pula
pulb
pulx

rol
rola
rolb
ror
rora
rorb
rti
rts

sba
sbca
sbcb
sec
sei
sev

staa
stab
std
sts
stx
suba
subb
subd
SWi

tab
tap
tba
tpa
(5)¢
txs

tst
tsta
tstb

wai

Load/Store Opcodes

|daa - load 8-bit accumulator "a"

|dab - load 8-bit accumulator "b"

ldd - load 16-bit double accumulator "d”
ldx - load16-bit index register "x"

lds - load16-bit index register "x"

staa - store accumulator a

stab - store accumulator d

std - store double accumulator
stx - store x register

sts - store s register

Load/Store Opcodes

ldaa, ldab - can use direct, extended, indexed,
or 1 byte immediate.

|ldd, Idx, |Ids- can use direct, extended, indexed,
or 2 byte immediate.

staa, stab, std, stx, sts
- can use only direct, extended or indexed modes.

Example Program

We'll ignore the S, PC, and CCR registers for now, and just focus on the
accumulator and index registers...we’ll learn more about the stack and
condition codes later.

Here’s an example — note the spaces at the beginning of each line.
The MC-10’s text display starts at location $4000 (16384) and ends
at $41FF (16895).

Let’s write 72(H) and 73(l) to the screen in various locations:

[P tuti.txt - Notepad
Edit Format View Help
g 32768 ; tell tasm to start compilation at Tocation 32768

#72 ; load A with value 72
#73 ; Toad B with value 73
16384 ; store A into memory location 16384
16385 ; store B into memory location 16385
16384 ; Toad X with data from address 16384-5
16894 ; store X at bhottom of screen
#16384 ; Toad X with the value 16384
X ; load B with data from the address pointed to by X (16384)

l:x ; load A with the data from address gointed to by X+1 (16385)

5, % ; store D (which consists of A and B) to address x+5 (16389)

; return (in this case to BASIC).

; tell tasm that we're finished.

Use TASM to compile

‘e Command Prompt

C:\greg\Personal\Arcade\MC10\VirtualMC18\tools\tasm31>dir
Uolume in drive C has no label.
Uolume Serial Number is 8C38-2E84

Directory of C:\greg\Personal\Arcade\MC18\UirtualMCiB\tools\tasm31

A7/21,28087 ©1:086 <DIR> .
A7/21,2887 ©1:86 <DIR> ==
0?,25,2004 10:24 29 goasm.hat
02/28,/1998 11:48 485 MOTO.H
02/28,/1998 11:48 2,158 ORDERFRM.TXT
A7/21,2887 ©1:83 <DIR> projects
10,83,2004 11:37 1,276 readme_tasm.txt
2/28,1998 11:50 215,872 TASM.EXE

02/28,/1998 11:48 14,0871 TASM68.TAB
02/28,/1998 11:48 85.550 TASMMAN.HTM
0?/26,2004 0B92:23 148 testasm.txt
A7/21,2887 12:58 7?57 tutl.txt

9 File<(s> 319,466 bytes

3 Dirds> 24,218,574.848 hytes free

C:\greg\Personal\Arcade\MC10\UirtualMC1iB\tools\tasm31>tasm -68 -b —x3 tutl.txt
TASM 6800-6811 Assembler VUersion 3.1 Febhruary, 1998.
Copyright (C> 1998 Squak VUalley Software
tasm: pass 1 complete.
tasm: pass 2 complete.
tasm: Number of errors = 0

C:\greg\Personal\Arcade\MC1O\UIRTUA™1\tools\tasm31>_

Use Virtual MC-10 to read In

UHC
10
File Configure | Ukl Debug

Load Binary File

CSAYEM - save RAM as .C10

Screenshot

MICE

COFY Fus
0k

Browse to get your object

Load a binary file to memory

C:\areg\Personal\arcade\MC10%irtualM C10\toolshtasm314FLIP.OBJ
Addresses below are assumed decimal - precede hex entry with a $
Load to address:

[v Set EXEC address to:

Cancel |

Look for TASM *.obj files

) tasm31

__Jprojects

File hame: FLIF'.I:I BJ v
Files of type: dinary Files [*.bin Cancel |

|
TASM Object Files [*.obj

Open the obj file

__Jprojects

L2 TUT1.068])

File hame: TI_IT1 .0BJ v
Files of type: TASM Obiject Files [*.obj) Cancel |

I~ Open as read-only

Now set where it should go

Load a binary file to memory X|
C:h\greg‘\Personal\drcadeiMC10WirtualM C1 0htoolshtasm314TUT1.0BJ Browse |
Addresses below are assumed decimal - precede hex entry with a §
Load to address:

[v Set EXEC address to:

Cancel |

Clear the screen

ile Configure Ukl Debug

MICEOCOLOR EBER=IC 1.0
COFPYRIGHT 1%S&82 MICEOQZEOFT

Now run your program

File Configure ULl Debug

Here's the program and its output.

File Configure ULl Debug

P tut1.txt - Notepad
File Edit Format View

Toad A with value
1 B with value

B into memor
with data from

om t ad pointed to b

a from addres pointed to hy :
> of A and B) to addres:

return (in this

tel]l tasm that we're finished.

Using the debugger

* The Virtual MC-10’s debugger has several
windows:
— Register
— Memory
— History
— Disassembly
— Breaks
— LST (program listing)
— Script
— Map/Level

Using the debugger

* The Virtual MC-10’s debugger has several
windows:
— Register
— Memory
— History
— Disassembly
— Breaks
— LST (program listing)
— Script
— Map/Level

Tutorial #2
Increment and Decrement

aba beq bra daa jmp mul rol tst
=]0) ¢ bne brn dec jsr rola tsta
adca bcc deca neg rolb tstb
adcb bcs cba decb nega ror
adda bhi clc des negb rora wai
addb bhs cli dex nop rorb suba
addd blo clr rti subb
anda bls clra eora oraa rts subd
andb bge clrb eorb sl orab SWi
asr bgt clv Isla sba
asra ble cmpa inc Islb psha sbca tab
asrb bt cmpb inca Isld pshb sbcb tap
bmi CpX incb Isr pshx sec tba
bita bpl com ins Isra pula sei tpa
bitb bvc coma inx Isrb pulb sev tsx

bsr bvs comb Isrd pulx txs

Increment instructions

iInca — increment register a (a = a+1)
iIncb — increment register b (b = b+1)
INX — increment register x (x = x+1)
iIns — increment register s (s = s+1)

inc address — increment contents of specified
2 byte address

inc offset,x — increment contents of address
pointed to by adding X and the
single-byte offset

Decrement instructions

deca — decrement registera(a=a - 1)
decb — decrement registerb (b =b - 1)
dex — decrement register x (x = X - 1)
des — decrement registers (s =s - 1)

dec address — decrement contents of the specified
2 byte address

dec offset,x — decrement contents of address
pointed to by adding x and the
single-byte offset

Rollover

* Incrementing a byte that contains the

nighest value (255) wi
* Decrementing a byte t

| roll it over to O.
nat contains the

owest value (0) will ro

| It back to 255.

* Two-byte words (x, s) will “roll over”

between the values of

0 and 65535

Example program

P tut2.txt - Notepad
File Edit Format View Help
.org 32768 ; tell tasm to start compilation at location 32768

Tdaa #65 i load A with value 65 (ascii for '"A')
Tdx #16384 ; load X with value 16384 (start of screen)
X ; store letter 'A' dnto first location.
- = 66 (ascii for 'B')
= 16385
tore letter 'B' to next
= 67 (ascii for 'C')
= 16386
store letter 'C' to next location
Toad A with value 0.
decrement A, since it s 0, it will roll back to 255.
store A to next screen location
store A again to the next screen Tocation.
directTy increment the contents of the Tast location
return (in this case to BASIC).

tell tasm that we're finished.

¢t Command Prompt

C:\greg\Personal\Arcade\MC1B\UIRTUA™1\tools\tasm31>tasm —68 -b —x3 tut2.txt —
TASM 6888-6811 Assembler VUersion 3.1 Febhruary, 1998.
Copyright (C)> 1998 Squak Ualley Software
tasm: pass 1 complete.
tasm: pass 2 complete.
tasm: Number of errors = 0

C:\greg\Personal\Arcade\MC1B\UIRTUA™1\tools\tasm31>

Output

File Configure Uil

Output

67

255

File Edit Format VYiew Help

creen)
location.

Toad A w

decremen 5 s 0, it will roll back to 255.
stor b on

stor in to the , reen location.

directly increment the ts of the last Tocation
return (in this

e A
e

tell tasm that we're finished.

aba
abx
adca
adcb
adda
addb
addd
anda
andb
asr
asra
asrb

bita
bitb
bsr

beq
bne
bcc
bcs
bhi
bhs
blo
bls
bge
bgt
ble
blt
bmi
bpl
bvc
bvs

Tutorial 3

bra
brn

cba
clc
cli
clr
clra
clrb
1\,
cmpa
cmpb
CpX
com
coma
comb

#3 and

Addition

daa

eora
eorb

lygle
jsr

sl

Isla
Islb
Isld
Isr

Isra
Isrb
|srd

mul

neg
nega
negb
nop

oraa
orab

psha
pshb
pshx

pula
pulb
pulx

rol
rola
rolb
ror
rora
rorb
rti
rts

sba
sbca
sbcb
sec
sei
sev

suba
subb
subd
SWi

tab
tap
tba
tpa
(5)¢
txs

tst
tsta
tstb

wai

Unsigned Addition

Addition shares the same “rollover”
properties as incrementing.

You may add values to the A, B, or D
accumulators (adda, addb, addd)

You can add to the contents of the A
register by the contents of the B (aba).

You can add the B register (unsigned) to
the contents of the X register (abx)

Tutorial #3 — unS|ned addltlon

File Configure Ut

A Bl

P tut3.txt - Notepad

File Edit Format Yiew
.org 32768

rt of screen)

columns down.

Tutorial #4 Signed Addition

* The “rollover” property can be used to
construct negative numbers.

 We will first discuss an odometer which
rolls over at 1000000 miles.

* We'll then apply this to our 8-bit and 16-bit
accumulators which rollover at 256 and
65536.

Odometer Example

 Consider an old
fashioned odometer
that goes from
000000 to 999999.

* |If you drive exactly
1000000, 2000000,
3000000 or any
multiple of 1000000
miles, the odometer

will go back to
000000.

Odometer Example

* |If your odometer is at,
say, 83014 miles, and
you drive exactly
1000000 miles, then
the odometer will still

read 83014. /

083014

+1000000 miles

083014

Odometer Example

* |If your odometer is at, as014
say, 83014 miles, and +999999
you drive exactly Ve30L3
999999 miles, then

the odometer will read %
read 83013. *99X9_9199“
Note that adding

999999 is the same 1

X-1

as adding -1.

Odometer Example

* |If your odometer is at, as014
say, 83014 miles, and +999998
you drive exactly V830t
999998 miles, then

the odometer will read %
read 83012. e
Note that adding

999998 is the same 2 o

X=2

as adding -2.

Odometer Example

 This suggests the following relationship:
— X =1000000 - X
* Thus if your “odometer” only has positive

numbers, you can use the “rollover” property to
find the equivalent negative number.

Odometer Example

* Let's say your odometer is 559008 <
at 999998 miles. If you ¥ 5
drive 5 miles, you'll end up Douobs
with a reading of 000003

miles.

* Note the equivalency again ¥ >
of 999998 = -2

8-bit Odometer

A single byte roll-over occurs at 256.

Thus,

-X =256 - X (single-byte)

By convention, numbers O, 1, 2, ...,127 are
considered “positive”

Numbers 128, 129, 130, ..., 253, 254, 255 are
considered “negative” and correspond to values
-128, -127, -126, ..., -3, -2, -1.

Note that +128 cannot be represented with this
convention, but -128 can.

8-bit Negation Instructions

* You can negate the value of either the A or
B register (nega, negb)
* You can negate an address

ldaa #10 : A holds 10

nega ; A holds -10 (246 = 256-10)
neg 16384 ;negate first screen char
neg ,X ; negate what X points to

16-bit Odometer

A double byte roll-over occurs at 65536.

Thus,

-X=65536 — X (double-byte)

By convention, numbers O, 1, 2, ..., 32767 are
considered “positive”

Numbers 32768, 32769, 32770, ..., 65533, 65534,
65535 are considered “negative” and correspond to
values -32768, -32767, -32766, ..., -3, -2, -1.

Note that -32768 is in this set, but that +32768 cannot
be.

Sadly, there is no 16-bit negation instruction

Signed arithmetic

Like driving the car, addition and
subtraction with rollover don’t really care if
you consider your numbers as signed or
unsigned. The computer will blindly
increment or decrement its “internal
odometer” the specified number of times,
and leave you with the result, which you
can use either as signed or unsigned
depending on your needs.

Negative Operands

 The TASM compiler will gladly accept

negative numbers to instructions that take
Immediate operands.

* It will automatically convert them to their
‘'unsigned’ equivalents depending on
whether the particular instruction expects
a 8-bit or 16-bit operand.

e |daa #-1 -> |daa #255
» addd #-3 -> addd #65533

Example #4 - Signed Addition

P tut4.txt - Notepad

File Edit Format Yiew Help

5 Tines down from first location.
E'Y

[[N

(ascii for 'C')

0 BASIC).

.end ; as nat we' inished.

Tutorial #5
Subtraction

beq bra daa jmp mul rol tst
bne brn jsr rola tsta
adca bcc rolb tstb
adcb bcs cba ror
bhi clc rora wali
bhs cli nop rorb suba
blo clr rti subb
anda bls clra eora oraa rts subd
andb bge clrb eorb sl orab SWi
asr bgt clv Isla sba
asra ble cmpa Islb psha sbca tab
asrb bt cmpb Isld pshb sbcb tap
bmi CpX Isr pshx sec tba
bita bpl com Isra pula sei tpa
bitb bvc coma Isrb pulb sev tsx

bsr bvs comb Isrd pulx txs

Subtraction

e Subtraction shares the same “rollover”
properties as decrementing.

* You may subtract

— values from the A, B, or D accumulators (suba, subb,
subd)

— the contents of the A register by the contents of the B.
(sba)
« Unfortunately, there is no corresponding sbx

instruction that subtracts the B register from the
X.

Example #5

Subtraction

File Configure Ut

ERACD

P tut5.txt - Notepad

File Edit Format Yiew
.org 32768 asm to start compilation at location

F screen)

A

=]
h

(ascii

=t

22708

5 Tines down from first location.

for 'C')

adca
adcb

anda
andb
asr
asra
asrb

bita
bitb
bsr

beq
bne
bcc
bcs
bhi
bhs
blo
bls
bge
bgt
ble
blt
bmi
bpl
bvc
bvs

bra
brn

cba
clc
cli
clr
clra
clrb
1\,
cmpa
cmpb
CpX
com
coma
comb

Tutorial
Branch Instructions

daa

eora
eorb

lgle
jsr

sl

Isla
Islb
Isld
Isr

Isra
Isrb
|srd

+0

mul

neg
nega
negb
nop

oraa
orab

psha
pshb
pshx

pula
pulb
pulx

rol
rola
rolb
ror
rora
rorb
rti
rts

sbca
sbcb
sec
sei
sev

SWi

tab
tap
tba
tpa
(5)¢
txs

tst
tsta
tstb

wai

Condition Codes
for Addition and Subtraction

The “Z” bit is set when the result is zero

The “N” bit is set when the result is
“negative”

The “C” bit is set when the operation rolls
through zero.

The “V” bit is set when the operation rolls
through 32768.

Comparison

« Comparison sets condition codes exactly like
subtraction, except that the result is discarded
and not stored back in the registers.

* YOou may compare
— the values from the A or B accumulators (cmpa,
cmpb)
— the contents of the A register to the contents of the B
(cba)

— The value of the X register (cpx)

« Unfortunately, you can’t compare the value of
the D register (but you may subtract it).

Branch Instructions

» Usually performed after subtraction or
comparing two numbers

* Branches can reach only a small distance
from the location of the next instruction (up
to 127 bytes ahead or 128 bytes behind)

» Larger branches require an explicit,
unconditional, jump to memory (jmp)

Generic Branch Opcodes

e bra — branch always
 brn — branch never®*

* beq — branch if equal to zero (Z=1)
* bne — branch if not equal to zero (Z=0)
* bmi — branch if minus (N=1)
* bpl —branch if plus or zero (N=0)
* bcs — branch if carry set (C=1)
* bcc — branch if carry cleared (C=0)
* bvs — branch if overflow set (V=1)
* bvc — branch if overflow cleared (V=0)

*brn is usually used as padding or a timewaster

Unsigned Branch Opcodes
(used after subtraction/comparison)

* blo — branch if lower

* bls — branch if lower or same

* bhi — branch if higher

* bhs — branch if higher or same

* beq — branch if equal
* bne — branch if not equal

Sighed Branch Opcodes
(used after subtraction/comparison)

* blt — branch if less than

* ble — branch if less than or equal to
* bgt — branch if greater than

* bge — branch if less than or equal to

* beq — branch if equal
* bne — branch if not equal

Example 6a
Increment all values on screen

File Configure LUkl

MICROCOLOR BASIC 1.0
COPYRIGHT 1282 MICROSOFT

[P tut6a.txt - Notepad
File Edit Format VYiew Help

.org 32

in

compare with end of screen

return from subroutine (to BAS

100% _|o] x| . BNt T asm that we're finished.

File Configure LUkl Help

Example 6b
screen bubble sort

File Configure LUkl

MICROCOLOR BASIC 1.0
COPYRIGHT 1282 MICROSOFT

[P tut6b.txt - Notepad
File Edit

compilation at Tocation 32768

again: X ; int x to st F screen

NXTpos:
een data
jual -- don't swap
x and x+1

100% | =101 |- ocyap:

File Configure LUkl Help

ABCCCCCCEEFGHIIIIKLMMOOOOODOOOPRRR
RESTTXY

Example 6¢
Reverse Scroll

File Configure LUkl

MICROCOLOR BASIC 1.0
COPYRIGHT 1282 MICROSOFT

P tut6c.txt - Notepad
File Edit Format VYiew
.org 2 ¢ 3 tell tasm to start compilation at location 3

point x to one position after row above Tast ce

File Configure LUkl

again s \ X : store o

MICROCOLOR BASIC 1.0 Cpx 16416 ; compare with second row, first column
COPYRIGHT 1982 MICROSOFT again ; go until we'r

0K s ; return from

0K
.end T

adca
adcb

anda
andb
asr
asra
asrb

bita
bitb
bsr

Tutorial

it

Mask Instructions

clc
cli
clr
clra
clrb

clv

com
coma
comb

daa

eora
eorb

jsr

sl

Isla
Islb
Isld
Isr

Isra
Isrb
Isrd

mul

nop

oraa
orab

psha
pshb
pshx

pula
pulb
pulx

rol
rola
rolb
ror
rora
rorb
rti
rts

sbca
sbcb
sec
sei
sev

SWi

tab
tap
tba
tpa
(5)¢
txs

tst

tsta
tstb

wai

And, Or, Eor

* These are bitwise operations with the
usual properties:
— And with 0 -> 0.
— Or with 1 -> 1.
— Eor with 1 -> flip the value.
— Otherwise, leave value unchanged.

* They work on either the A or B register
(anda, andb, oraa, orab, eora, eorb).

File Configure LUkl

P tut7a.txt - Notepad

File Edit Format Yiew Help

100% -10] x| | .org 32768 ;tell tasm to start at 32768

File ~Configure Ll Help Tdx #16384 ;load x with value 16384 (start of screen)
againl: Tdaa ,x ;get the value from address pointed by x
MICROCOLOR BASIC 1.0 anda #63 imask off the upper bits
COPYRIGHT 1382 MICROSOFT staa ,x istore back to address pointed by x
g§5032759 inx sincrement x]
e cpx #16896 ;compare result with end of screen

bne againl ;branch if not equal

EXEC32784
oK rts

100% -10] x| Tdx #16384 :lToad x with address of top of screen.

. - . ldaa ,x ;get contents of x

File ~Configure Ll Help oraa #64 :set the bit for dark-on-light green.
staa ,x ;store back to address

inx increment x

Cpx #16896 ;compare result with end of screen

bne again2 ;branch if not equal
rts

Tdx #16384 ; 1load x with address of top of screen.
Tdaa ,x ;get contents of x

eora #64 ;T1ip the bit for dark-on-1ight green.
staa ,x ;store back to address

inx vincrement x

100% =10 x| cpx #16896 ;compare result with end of screen
bne again3 ;hranch if not equal

File Confi Ltil Hel
File Configure i Help ety

MICROCOLOR BASIC 1.0

e EE e e e .end ; tell tasm we're done.

Binary constants and ‘%’

YO u Ca n type i n tu‘t"te Help

.0rg 32768 ;tell tasm to start at 32768

a blnary nUI I lber Tdx #16‘84 ;Toad x with value 16384 (start of screen)
inl: Tdaa .qet the value from address pointed by x
(j' tI t) - anda #500111111 mask off the upper hits
IreC y y USIng staa ,x _:tcn‘e back to address pointed by x
inx ,1ncrement X
‘Q/ ! . cpx #16896 ;compare result with end of screen
the /0 preflx- Egg againl :branch if not equal

Tdx #16384 ; load x with address of top of screen.
again2: ldaa ,x ;get contents of x

oraa #%01000000;set the bit for dark-on-1ight green.

staa ,x ,store hack to address

inx sincrement x

cpx #16896 ;cumpare result with end of screen
bne againz ibranch if not equal

rts

Tdx #16384 ; 1load x with address of top of screen.
ldaa ,x ;get contents of x

eora #%01000000 f1ip the bit for dark-on-Tight green.
staa ,x ,:tare bhack to address

Tnx sincrement x

cpx #16896 ;compare result with end of screen
bne again3 ;branch if not equal

rts

. end ; tell tasm we're done.

Bit

e Same as “anda” or an “andb” instruction
except the result is discarded.

 The condition codes can be used to
iInspect if certain bits were set.

* Since the result is discarded, you can
check the A or B reqister for various bits
without needing to save the value.

ldaa #%00110110
bita #%01000000
bne bitwasset
bita #%10001000
beqg bothwerezero

o
4

Bit Example

.
14

.
14

.
14

o
4

% 1s binary prefix

see 1f bit 6 1s set.
go 1f bit 6 was set.

set 1f either bit 7 or 4 is set.

go 1f both bits were zero

Tst

 Sets the N and Z condition codes
depending on the data.

* You can test the A or B registers (tsta,
tstb), or a value in memory (tst)

Bit example

[P tut7b.txt - Notepad
File Edit Format Yiew Help

.org 327 ;tell tasm to start

100% =10| x| \ - ; are PT{:]I-{[II end of screen
File Configure LUkl Help 2 3 0T edqL

MICROCOLOR BASIC 1.0 ’ asm we're done.
COPYRIGHT 1282 MICROSOFT

Reading the keyboard

* Reading the keyboard involves writing to
location 2 and reading from either location

49151 or 3.
* The keys are grouped in sections of 8.

* You'll use logic-0 values to determine
which key is pressed.

Keys associated with 49151

corresponding bit
(read from 49151)

ldaa #%11101111 ;bit 4 corresponds to ‘L’
staa 2

Tdaa 49151

bita #%00000010

beq keypressed

corresponding bit
(read from 49151)

ldaa #%11111110 ;bit O corresponds to ‘X’
staa 2

Tdaa 49151

bita #%00001000

beq keypressed

Example: Direction keys?

Tdaa #%01111111
staa 2

Tdaa 49151

bita #%00000100
beq keyw

Tdaa #%11111011
staa 2

Tdaa 49151

bita #%00001000
beq keyz

Tdaa #%11111101
staa 2

Tdaa 49151

bita #%00000001
beqg keyA

Tdaa #%11110111
staa 2

Tdaa 49151

bita #%00000100
beqg keyS

o A WODN -~O

Keys associated with 3

bits to inspect (write to 2)
0 1 2 3 4 3 6 7

corresponding bit 4 E:,E, '.6’ ---'&“"
(read from 3) ‘----“

;1S BREAK pressed?

Tdaa #%11111011 ;bit 2 corresponds to ‘break’
staa 2

ldaa 3

bita #%00000010 ;bit 1 cleared for CTL, BRK, and SHIFT
beqg keypressed

adca
adcb

asr
asra
asrb

bsr

Tutorial

+3

Bit manipulation

clc
cli
clr
clra
clrb

clv

com
coma
comb

daa

jsr

sl
Isla
Islb
Isld
Isr
Isra

Isrb
Isrd

mul

nop

psha
pshb
pshx

pula
pulb
pulx

rol
rola
rolb
ror
rora
rorb
rti
rts

sbca
sbcb
sec
sei
sev

SWi

tab
tap
tba
tpa
(5)¢
txs

wai

Clear Instructions

* Equivalent to loading A or B with zero
(clra, clrb)

* You may clear a memory address directly
through either the extended or indexed

modes (clr)

Complement Instructions

* Flips all the bits in either an accumulator
(coma, comb) or register or memory
address (com)

Logical Shifting

* A quick way of multiplying/dividing an unsigned
number by 2.

* You can shift the accumulators or memory
left/right by 1 bit.
(Isla, Islb, Isld, Isl; Isra, Isrb, Isrd, Isr)

« Zero is shifted in, and the remaining bit is shifted
into the carry.

ISI Cle v eaeag | X2

ISr O|=»| P> |=|C =2

Arithmetic Shift Right

A quick way of dividing a signed number by 2.

You can shift the A or B accumulator or memory
right by 1 bit. (asra, asrb, asr)

The “sign” bit is left unchanged, and the
remaining bit is shifted into the carry.

Signed multiplication by 2 can be done using the
Isl instructions

asr C—-» L i e i S = C =2

Rotating through the carry

* You can shift the A or B accumulator or
memory left/right by 1 bit.
(rola, rolb, rol; rora, rorb, ror)

* The carry is shifted in, and the remaining
bit is shifted into the carry.

rOI I— « G G € <-C4J

ror L (e 5 r e - [g] —

[P tut8a.txt - Notepad

File Edit Format View Help
templ .equ 32766
temp2 .equ 32767
.org 32768 ;tell tasm to start at 32768
e Oa r Tdx #16384 ;clear the screen
Tdaa #32

clrscn staa ,x
inx

Ccpx #16895
rO e bls clrscn
;First, draw the keypad

clra ;ya hold current char
Tdx #16384+12+128 ;start of keypad
drwrow Tldab #8 ;b holds column count
drwnxt staa ,x ywrite char to screen
inca ;get next char
inx ;bump screen pointer
cmpa #64 ;see if done
begq drwent jdraw the enter key if done
cmpa #27 ;see if gone past 'z’
bne drmore skeep going
Tdx #16384+12+128+128 ;otherwise, Toad next row
"|Uﬂgl ;daa §48 ;§Et char to '0' (ascii 48)
m o - X ra drwrow ;draw next row
Eﬁ cil - —lgl—] drmore dech ydecrement column count
ne drwnxt ;go if not done with column
1gab #24 ;otherwise, bump screen pointer by 24
abx
bra drwrow ;draw next row
drwent Tldaa #31 ;char for "<=" symhbol
staa 16384+12+128+96+6 ;store in "enter' location

File Configure LUkl Help

;Now highlight keys as they are pressed
JdAECDEFG keylite ldx #16384+12+128 ;start of kegpad
HIJEALMNO Tdaa #1 ;start with bit o
staa templ ;templ = which bit to mask (0-5)
staa temp2 ;temp2 which bit to check (0-7)
nxlite Tldaa temp2
coma ;F1ip the bits
staa 2 ;store in keystrobe
Tdaa 49151 ;get the key group
ldab ,x ;get the current screen char
bita templ ;check the key against the current one to inspect
beg hilite ;hilite if pressed.
andb #%00111111 ;otherwise de-highlight it
bra mklite
hilite orab #%01000000 ;set the hilight bit of the char
mk1lite stab ,x ywrite char to screen
inx ybhump screen pointer
1sT1 temp2 ;inspect next bit
bcc nxlite ;go if not done
rol temp2 ;store bit back at bito.
1gab #24 ybump screen pointer by 24
abx
Tdab templ ;bump mask to next bit
1s1h

stab templ
cmpb #%01000000 ;see if no more keys Tleft
bne nxTite

Tdaa #%11111011 ; check break key

staa 2

Tdaa 3

hita #%00000010

bne keylite ; keep hilighting keys until break pressed.
rts

.end

Video Modes

 The MC6847 is capable of two major
modes of execution

— Major Mode 1
A fully-interchangeable 32x16 character
format

— Major mode 2:
A dedicated graphics mode

Video Control

49151 7 6) 4 3 2 1 0
($BFFF) sound | CSS | A/G | GMO | GM1 | GM2 | N/IC | NIC

. The MC6847 INT/EXT pin is physically tied to the GM2 pin. INT/EXT

TABLE 1 — MODE CONTROL LINES (INPUTS)

p

Alpha/Graphic Mode Select # of Colors

Internal Alphanumerics
internal Alphanumerics inveried
Externa!l Alphanumencs
External Alphanumerics Inverted

X [Semigraphics 4 (SGA4)

X [Semigraphics 6 (SG6}

0 64 x 64 Color Graphics One (CG1)

128 x 64 Resolution Graphics One (RG1)
128 x 64 Color Graphics Two (CG2)

128 x 36 Resolution Graphics Two (RG2)
128 x 96 Color Graphics Three (CG3)

128 x 192 Resclution Graphics Three (RG3)
128 x 192 Color Graphics Six (CG6)

256 x 192 Resolution Graphics Six (RG6)

Clearing bit 5 of the control register
puts the MC6847 into “Major Mode
1” which can display basic text and
limited graphics characters.

< x 2]

HE

Setting bit 5 of the control register
puts the MC6847 into “Major Mode
2” which is divided into a two color
(resolution graphics) or four color
(color graphics) mode.

0
0
)
1
0
1
X
X
X
X
X
X
X
X

MWMMH.

0
0
0
0
]

1

X
X
X
X
X
X
X
X

XX X XX XXX

6847 Major Mode 1

DISPLAY MODES

There are two major display modes in the VOG. Major
mode | contains four alphanumeric and two limited graphic
mades Major moge 2 cortains eight graphic modes. Of
these, four are full color graphic and four restricted color
graphic modes. The mode selection for the VDG is sum-
marized in Table 2. The mpemonics of these fourteen modes
are explained in the following secuons

in major mode 1 the display window is divided into 32 col-
umns by 16 character element rows thus requiring 512 bytes
of memory. Each character element is 8 half periods by 12
scan lines in size a3 shown in Figure 19, The area outside the
display window is black

The 5 x 7 characler font i1s positioned two Columns o he
rgnt and three rows down within the 8% 12 character eie
ment. Six bits of the B-bit data word are typically used ior 1he
internal ASCH ¢haracier generator. The remaining two buis
may be used 1o implement inverse video, color swiiching. or
exiernal character gererator ROM selection on @ charactes-
by-character basis, For those who wish to display lower case
letiars, special characters, or even limited-graphics, an exies-
nal AOM may be used. if such external ROM is :

the 8x 12 picture elements, or pixels, i1 the cha'a

ment can be utilzed. Characters may be ethar green on a
dark green background or orange on a dark orange

vackground, depending on the state of the Gt Spn. The in
vert pin can be used to display dark characiers i
background

The VDG has a built-in characier generator ROM contain-
ing the B4 ASCII characters i a bx 7 format isee Figure 201

TABLE 2 —~ SUMMARY OF MAJOR MODES
Major Mode 1 Alpha Modes

Title Display Elements Colors Title
! 2

Oisplay Elements Colors

Alphanuimerncs Semigraphic 4

{internal)

Elzmen:

ST
S
Alphanumarncs

{Externall

Semraphic &

TSI L AN L]

Q)
e 004 dpable O dNneo O 0 0 e 10110 e cl e ee cl dl d er-0
C C c . A
04 erna Or o4 externa generated alipha aracte O OIO eme
Dark green on light gree
g g e O da gree
Dark orange on light orange
g O ge o da orange
A 0 qgrap aracter of a one o eig olors o
alpha e 024 grap aracte possible
O orrespona to ed 0 0, O que pe e e
YDG Pine Color TV Screen vi ata Bus Comments
o - 0G D
WS 16/A [S/AK EXT/INT JGMZ | GM1 | GMG] CSS |INV | Charscter Color [Background] Border Display Mode Dotail
pat— & —t The ALPHANUMERIC INTERNAL mode uses ar intenal charec:e
¢ | S Black Black 2 Chamctars * o5 1.1 genersiDr Iwnich contairs the foliowing five dat by seven doi
1 4 Q 4 X X X ! Black Grean oer tow 20 T charactars @ADCDEFGHIJKLMNDPORETUVWX Y]
! i v e Bleck i ol (\If]-+SP 1"#$%&'C)"+ - 0173456780 . < =>7 The six bi
1 Back Orone nrews * ¢ ASCH code leaves two bds Iree ang these may be externaly ton
i —— » oected 1o the mods pns 1G 1A, S/&, EXT/NT, GM2, GM1. GMO.
€SS or INVE
axt ASCl Cove
inernal Alphanumenics
o | 0} Green Black Buck |32 Characters The ALPHANUMERIC EXTERNAL mode uses #n extarmal characrer
X ' Blacx Green per low genaratox a8 wel 3¢ 3 10w counter Thus, Custom characier foms o
‘ °l° l *) ’ 1 0| Gange Buack Black 18 Characiers graphic symbal sats with up 10 256 detterent 8 x 12 got “'characizrs”
' Back Qrange In roves | I] l ! [[T—l may be drsplayed
One Row of
Custorn Charactars
ex et {C0 Lo aleia The SENMIGRAPHICS FOUR mode uses 3n ieing: ~ Cousse graohes
¢ X | x px Bk > 4 neiates A which a rac1angle feignl dots Dy tweive dctst is dwided
54 spiay elements 98! 9
! oqe e Ginen e PO ‘ no four equal paris The lumnance of sack £ar 1S cetermineC 'y a
I B B D R Sl e ler]co L—‘I 2 [L- [LDI corrasponding b on the YOG dana bus The color o lminated car's
! 2 ! 0 x X N x x N oo :Iue Blsch 32 Display elements * ¢ - 18 delermined by 1hras bits
1 a1 L] f ows ‘— .I
1o |o | B 8l wftoe a2
vl dod Ycen 1) [Elemem
Al 1] §o | Megema i
1 1 1 {1 Orange
A Sl B Trias SEMIGAAPHIC S1X mode 13 similer ta the SEMIGAAPHIC FOUR
© ; 3 Z:‘:,, kWPl moge with the ioliewing diffarmnces Tre sph ot by tweive dor "ec:
: 64 Dispigy elements [1ngie is diwded o six aquat parts Coor 1S Jetermined Dy the two
1 C ,I Yellow R 4 L La remaireng s
¢ 1 1|0 | Bue Black IL” I"Ol"s wlololube
1 ¢ 1 1 x X b X 1 1 1 Rea Dol \ements b L
\) x | x | Biaex " ';:: av e 4 ¥ -3 .
1 0)0 | But T | Ora
1 0§ | Cvan 1 v | Lk epmen
1 v FC | Magenta
1 1] | Orange
1 BNl Color

Fau A MG ADADMITE ANE rmarde esc 3 mayimom af 1094 hvles nf

6847 Major Mode 1

 The MC-10 uses only 8-bits to specify
the characters in major mode 1.

— bit7 of the incoming data character is
wired to control the A/S line. This lets you
switch between semi-graphics and alpha-
numeric characters

— bit 6 of the incoming data character is set
to control the INV line (which is used in
alpha-numeric mode to determine if a
character’s color scheme is inverted)

TABLE 1 — MODE CONTROL LINES (INPUTS)

Alpha/Graphic Mode Select # of Colors

X |internal Alphanumerics

internal Alphanumerics {inveried 2
X [External Alphanumencs
X [External Alphanumerics inverted

Semigraphics 4 (SG4)

Semigraphics 6 (SG6}

64 x 64 Color Graphics One (CG1)

128 x 64 Resolution Graphics One (RG1)
128 x 64 Color Graphics Two (CG2)

128 x 96 Resolution Graphics Two (RG2)
128 x 96 Color Graphics Three {CG3)

128 x 192 Resclution Graphics Three (RG3)
128 x 192 Color Graphics Six (CG6)

256 x 192 Resolution Graphics Six (RG6)

>l
~
()
2
H
m
x
|
Z
<

X

w

XXXXXXXXHH

0
0
8]
0
1
X
X
X
X
X
X
X
X

NAENA-ANANDS

6847 Major Mode 1

The remaining control pins that govern the first
major mode (CSS, INT/EXT) are governed by
writing to the Video Control register and are not
selectable by the data character.

« Only text and inverted text of one color can be
displayed on the screen with any 2x2 any-colored-
character block because the color select pin (CSS) is
globally settable.

« Having the CSS restricted to a global setting restricts
the color palette of the 2x3 blocks to either green-
yellow-blue-red or buff-cyan-magenta-orange.

« Since bit 7 of the incoming data character is tied to the
A/S pin, the color selection of the 2x3 blocks are
restricted to either red/blue or magenta/orange.

« Since the INT/EXT line is also globally settable, the 2x3
character blocks must be used in conjunction with the
mode for an external character ROM. When bit7 goes
low, the chip tries to use the external character ROM
(which is not implemented on the MC-10).

MC8847
(VDG)

Major Mode 1
store at SBFFF (49151)

SG4 64x32 B25;?ifff“fﬁfgilgﬁzzzf:iii SG4 64x32 AABCDEFGHIJKLHNOPGRSTUVHRYZINI T
$4000-$41FF - i $4000-541FF =-.ca b =LA
16384-16895 16384-16895

$BFFF—$00 $BFFF<«$40

POKE 49151, 0 POKE 49151,64

200505 RN oo eexee Al
$4000-$41FF $4000-$41FF 2o dlaETE

16384-16895 16384-16895
POKE 49151,12 POKE 49151,74

Major Mode 2

+ Since the CSS pin is globally settable only one palette at a time is displayed on-screen for
the graphics modes.

— Resolution graphics modes: green/dark green or buff/black
— Color graphics modes: green-yellow-blue-red or buff-cyan-magenta-orange

« The MC6847 would otherwise allow you to switch between these color schemes horizontally
every eight cells (resolution graphics) or four cells (color graphics)

The COLOR GRAPHICS ONE moge uses 3 maumum &
640 asplay RAM ir which one par of Dits specities 0e eicture el
ispiay elements

per row

64 Drsolay elements

128 Display elemens The RESCLUTION GRAPHICS ONE Mok uses 3 Tammurr
Der row nyles of ghsplay RAM = whick o~e bt spacifies one

64 Display elerments

N (OWS

128 Deplay glemens The COLOR GRAPHICS TWE moce uses 8 maxmum af 2048 pyes
Sam calor 38 Gree pet row . of dieplay RAM . winch pne pair of bits specifes one piciure semern:
Color Graohes -
Ora
64 Display elements
1N 10wWs
128 Display elerrenis The RESOLUTION GRAPHICS TWG mode uses a maximum of 1536

Sama cchor a4 pet row

Fesqluuon
Graghws Ore

byles ¢ disolay RAM N which one it specifies ore DiciuTe alemaen:

96 Dispiar elements
1N 1ows
128 Dsplay elerrents The COLOR GRAPHICS THREE mode uses @ maxmyr of 072 ovies

Serre colof as pet row of dsplay RAM 'n which Dne par of tytes specrfies one OTule e

Cotor Graphes

et
One

96 Disptay ekerments
in rows
128 Qisplay elemants Tna AESOLUT'ON GRAPHICS THREE mode uses a maxmum o

Swe color as Der row 077 bytes of gspiay RAN in which one bit specihies ore oicture ee-

Resolution

Graprecs One 192 Oisplay elerments

128 Dsplay elerents The COLOR GRAPHICS $1X mode uses 8 maamyrr of 5744 bytes ot
Sarre Cowor ¥4 Greer et o " ¢ v biis SOACIT S AN@ PrCTUre BIBMAnt
Cokr Grap*scy

192 Dixplay Elemants
In QW

256 Display elements The RESTLUTION GRAPHICS 51 mode utes 3 Tarmur: °
Der (Gw bvtes of dispray AN 1nweh one -t spec-iies 9@ DICIUTF e'erten:

Sare Cowor 35

Resoluien

firephics Qe
192 Cispley shaments
In rows

Major Mode 2

 The on-board Video RAM
for the MC-10 is 4K in size
g 2 bit address: $4000-
4FFF).

* Thus only 12 of the 13
address lines were wired to
the MC6847. (DA12is
unconnected)

« CG6 and RG6 will paint
data from $4000 - $47FF
instead of $5000 - $57FF.

Major Mode 2
store at $BFFF (49151)

RG1 128x64 RG2 128x96

$4000-$43FF
16384-17407

$4000-$45FF Bttt
16384-17919 e FIRIFIR R e IR

$BFFF—$30
POKE 49151,48 $BFFF—$38

POKE 49151,56

RG6 256x192

= C il e WS
Tww e o o e omm o WD WL DL LR -

$4000-$4BFF

$4000-$4FFF
16384-19455

16384-20479

$BFFF—$34

$BFFF—$3C
POKE 49151,52

POKE 49151,60

Major Mode 2
store at $BFFF (49151)

RG1 128x64 RG2 128x96

$4000-$43FF

$4000-$45FF
16384-17407

16384_17919 '-rh'.ﬂFlﬂ."llr,lllllllllllllll.

- T Bl ™ = =

SBFFF—$70

POKE 49151,112 $BFFF<—$78

POKE 49151,120

RG6 256x192

B - I I N N N N N

$4000-$4BFF
16384-19455

$4000-$4FFF
16384-20479

SBEFF s7c LI

$BFFF—$74 AR RO ULLLLELLLLELL
POKE 49151,124

POKE 49151,116

Major Mode 2
store at SBFFF (49151)

B : 111 L
SN

$4000-$47FF
16384-18431

CG1 64x64

$4000-$43FF
16384-17407

I';'l' '|' T '|' T

— W= -

- _I-I-I-I-I- 'l'

I

mFEE RN .

-
&

$BFFF—$20

POKE 49151,32 $BFFF$28

POKE 49151,40

CG3 128x96 l | ‘ m ||| IH CG6 128x192 B Fa TN MM AN MU AAAAAAS

$4000-$4BFF
16384-19455

$4000-$4FFF
16384-20479

$BFFF«—$24
POKE 49151,36

$BFFF—$2C
POKE 49151,44

Major Mode 2
store at $BFFF (49151)

CG1 64x64 CG2 128x64

$4000-$43FF

$4000-$47FF
16384-17407

16384-18431

$SBFFF—$60

POKE 49151,96 $BFFF 368

POKE 49151,104

CG3 128x96 CG6 128x192

$4000-$4BFF

$4000-$4FFF
16384-19455

16384-20479

$BFFF—%64
POKE 49151,100

SBFFF—$6C
POKE 49151,108

Rotating the screen

100% = (0O x|

Help

=TT £

imim e’ e HININIRIRIN]

100% = (0O x|

File Configure LUkl Help

= Al e R
IR NIRRT mm

[P tut8b.txt - Notepad

File Edit Format

temp .equ
.org

Tdaa
staa
Tdd
std
Tdx
Tdd
ror
inx
dech
hne
deca
bne
Tdx
dex
STX
bne
clr
rts

.end

View Help

32766
32768 ;tell tasm to start at 32768

#112 ;put MC1l0 into low res graphics mode
49151 H
#8193 ;1024 bytes ¥ 8 bits/byte + 1 carry hit
temp ;store into temp location
#16384 ;start of screen
#1024 ;1024 bytes for this mode
, X jrotate right with carry
imove to next screen position
jdecrement lower hyte of count
again ihranch if not done yet
;decrement upper hyte of count
again ;branch if not done yet
temp ;decrement temp counter

temp
rstart
49151 ;restore sG4 graphics mode

adca
adcb

bsr

Tutorial #9
Multi-byte math

daa mul
jsr
clc
cli nop
rti
rts
clv
psha sbca
pshb sbcb
pshx sec
pula sei
pulb sev

pulx

SWi

tab
tap
tba
tpa
(5)¢
txs

wai

Adding with Carry

* The add with carry instructions (adca,

adcb) will add the A or B register with the
carry bit.

* Since the carry is set when the result of an
addition instruction doesn’t fit in 8 or 16
bits, you can use the adc instructions to
continue adding the larger bytes.

ldaa
adda
staa

ldaa
adca
staa

ldaa
adca
staa

ldaa
adca
staa

Adding with Carry

Byte a3 Byte a2 Byte a1 Byte a0
+ | Byte b3 Byte b2 Byte b1 Byte b0
Byte c3 Byte c2 Byte c1 Byte c0
Byte a0 ;get least significant byte
Byte b0 ;add with corresponding byte (carry set if result rolled over)
Byte cO ;store result
Byte al ;get next significant byte
Byte bl ;add with corresponding byte (+1 if carry bit set)
Byte cl ;store result
Byte a2 ;carrying forward...
Byte b2
Byte c2
Byte a3 ;carrying forward...
Byte b3

Byte c3

Subtracting with Carry

* The subtract with carry instructions (sbca,
sbcb) will subtract from the A or B register
along with the carry Dbit.

* Since the carry is set when the result of an
subtraction instruction doesn'’t fit in 8 or 16
bits, you can use the sbc instructions to
continue subtracting the larger bytes.

ldaa
suba
staa

ldaa
sbca
staa

ldaa
sbca
staa

ldaa
sbca
staa

Subtracting with Carry

Byte a3 Byte a2 Byte a1 Byte a0
= | Byte b3 Byte b2 Byte b1 Byte b0
Byte c3 Byte c2 Byte c1 Byte c0
Byte a0 ;get least significant byte
Byte b0 ;subtract corresponding byte (carry set if result rolled over)
Byte cO ;store result
Byte al ;get next significant byte
Byte bl ;subtract corresponding byte (additional -1 if carry bit set)
Byte cl ;store result
Byte a2 ;carrying forward...
Byte b2
Byte c2
Byte a3 ;carrying forward...
Byte b3

Byte c3

Multiply Instruction

* Multiplies register A with B and stores the
result back into the D register.

[t assumes A and B are unsigned.

» Since the largest possible multiplication is
255 x 255 = 65025, the result will always
fit into the D reqister

Multi-byte Multiplication

» Can be performed similar to long
multiplication
— Compute product of pairs of bytes
— Add the results together

Example: Multiply the two 16-bit numbers stored

at M and N and save the product at location P.
(from http://www.cs.ucf.edu/~tkocak/eel4767/lec4.ppt)

* First, rewrite M and N as MuM. and NuNLu
where
— Mn and Nn are upper 8 bits of M and N respectively
— ML and N. are lower 8 bits of M and N respectively

 Mn and M. are stored at M and M+1 respectively
 Nuand N. are stored at N and N+1 respectively

lllustration
16-bit by 16-bit multiplication

(from http://www.cs.ucf.edu/~tkocak/eel4767/lec4.ppt)

8-bit 8-bit 8-bit 8-bit
upper byte lower byte M; N
upper byte lower byte MuN
upper byte lower byte M N
upper byte lower byte MuN
address P P+1 P+2 P+3 M x N
MSB | Y

Program:

Multiplying Two 16-bit Numbers

(from http://www.cs.ucf.edu/~tkocak/eel4767/lec4.ppt)

ldaa
ldab
mul
std
ldaa
ldab
mul
std
ldaa
ldab
mul
addd
std
ldaa
adca
staa
ldaa
ldab
mul
addd
ldaa
adca
staa

M+1
N+1

P+2

N+1

P+1
P+1

#0

M+1

P+1

#0

place ML in A

place NL in B

compute ML x NL

save ML x NL to memory locations P+2 and P+3
place MH in A

place NH in B

compute MH x NH

save MH x NH to memory locations P and P+1
place MH in A

place NL in B

compute MH x NL

add MH x NL to memory locations P+1 and P+2

add the C flag to memory location P

place ML in A

place NH in B

compute ML x NH

add ML x NH to memory locations P+1 and P+2
add the C flag to memory location P

Tutorial #
Stack Operations

daa
jsr

clc

cli

clv

bsr

nop

psha
pshb
pshx

pula
pulb
pulx

10

rti

sec
sei
sev

SWi

tab
tap
tba
tpa
(5)¢
txs

wai

The Stack

« Contiguous area of
memory used to keep
track of subroutines and
temporary variables.

* |t grows and shrinks from

one end. s
+ The S register points to P
the first empty byte at the e botiom

top.

Writing to the Stack

* When you save (or “push”) bytes to the stack,
the 6803 will

— decrement the S register by the number of bytes
— Store the bytes to the top of the stack

— to
S —top BN <«— 1O

<«—bottom <«—bottom <«—bottom

Reading from the Stack

* When you retrieve (or “pull”) bytes from the
stack, the 6803 will

— get the bytes to the top of the stack

— increment the S register by the number of bytes

top

<«—bottom

S—

IS —top

<«—bottom

S—

«—top

<«—bottom

Basic stack instructions

* YOU can:

— push/pull either accumulator to/from the stack
(psha, pshb; pula, pulb)

— push/pull the index register to/from the stack
(pshx, pulx)

— Increment or decrement the stack pointer
without any data transfer (ins, des)

* The condition codes are not affected by
these instructions.

Subroutines

* You can either branch to a subroutine (bsr)
or jump to a subroutine (jsr). The MC-10
will push the PC location of the next
instruction to the stack, then jump to the
specified destination.

* Subroutines are finished with a return from
subroutine instruction (rts) which pulls the
previously saved location from the stack
and jumps to the location.

Stack Philosophy

 Use the stack
— to store intermediate variables.

— to protect or preserve register values between
the caller and the subroutine

Tutorial #11
Transfer instructions

daa

clc

cli nop
rti

clv
sec
sei
sev

SWi

tab
tap
tba
tpa
tsx
txs

wali

8-bit Transfers

 You can transfer between accumulators
—tba transfer b to a
—tab transferatob

* You can transfer condition codes
—tpa transfer condition codes to a
—tap transfer a to condition codes

16-bit Transfers

* You can transfer the index/stack pointers
— tsx transfer (S+1) to X
— txs transfer (X-1)to S
 The +1 and -1 occurs so that X will point to

the top of stack, and S will point to the first
empty byte.

<—Top (X)

B ol o] Nl =
- PXPXIXPXPX

There is no direct way to transfer
between the X and D registers

* You can push and pull the values of the X and D
registers on the stack to load between them:

Transfer X to D:
pshx ;put X on stack
pula ;load A with X’s high byte
pulb ;load B with X’s lTow byte

Transfer D to X:
pshb ;put Tow-byte on stack
psha ;put high-byte on stack
pulx ;load X from stack

Transferring D to X

pshb

IER<—top

<«—bottom

psha

(o] 0]

<«—bottom

pulx

«—top

<«—bottom

Transferring X to D

pshx

(o] 0]

<«—bottom

pula

(o] 0]

<«—bottom

pulb

«—top

<«—bottom

)\ kscope.txt - Notepad

File Edit Format View Help
.org 32768

Example hl'reS graphICS (128X96) Tdaa #100 ; set hi-res color graphics mode

staa 49151

program similar to the “SPARKLE" I U qag Ky star of screen address

inx ; bump address

program in the MC-10 BASIC manual Shx Bfew ¢ comeare with end of sereen

Tdx #49152 ; load x with start address of rROM tahle

ldaa ,x ; get the color

anda #3 ; Torce it between 0 and 3

staa 2595 ; store in on-chip memory at location
addd 1,x ; try to randomize the A,B coords..
Isrd ; keep A between 0-128

eorh ,x ; try to randomize B
bsr plot i plot (A, B) with color at Toc 255.

- " - negh

File Configure Uil addb #95

bsr plot ; plot A,95-B) with color at loc 255
nega

adda #127

bhsr plot ; plot (127-A,95-B) with color at loc 255.
negh

addb #95

bsr plot ; plot (127-A, B) with color at Tloc 255.
inx 3 bump x (will wraparound automatically at 65535)
bra nextpt

A holds Xcoord, B holds ycoord.

Tocation 255 holds the color value.

pshx ; preserve caller's x value
pshh ; preserve caller's b value
psha ; preserve caller's a value

sha ; push Xcoord on stack
daa ;32 b*tes per ¥ coordinate
mul ; D holds result.
adda ; add 64%256 = 16384 to D (start of screen).
pspb ; transfer D into X register
psha H
pulx H
pulb ; pull back the Xcoordinte
tha ; copy it also into the A register
Isrh 3 divide Xc by 4.

Isrhb H
Em‘:lu ahx DX = 16384 + YC®32 + (XC»»2)

: . , now try to get proper 2-bit Tocation mask
Eile Configure LKil Tdab #%01000000 | STart with Teft bit.
anda #3 3 Teave if Xcoord is divisible by 4
- - 14" I —— LT - . g beq p]otpt
ey i shiftl }SFE ; move mask over by two bits
sr H
deca ; subtract 1 until Xcoord is divisible by 4
bne shift]
plotpt pshh ; "b" holds proper multiplier -» save to stack
tha ; set next bit
1s1h H
aha
coma ; a = NOT 3%B
anda ; clear off those old bits
staa H
ulh
d%a ; multiply "b" by color (0, 1, 2, or 3)
mu
orah ; now set the hits
stah
pula ; restore caller's a value
pulb ; restore caller's b value
pulx ; restore caller's x value
rts ; return

.end

t12

L
4

Tutorial 1

538

Implicit Carry Flag Clearing

* The carry is cleared by
—clr, clra, clrb

— tst, tsta, tstb

* The carry is set by
— com, coma, comb

Implicit oVerflow clearing

* The oVerflow flag is cleared by
—Idaa, Idab, Idd, Idx, Ids
— staa, stab, std, stx, sts
— anda, oraa, eora, bita
— andb, orab, eorb, bitb
—clr, clra, clrb
— tst, tsta, tstb
— com, coma, comb
— tab, tba

Explicit Flag Clearing

* You can explicitly set and clear certain
condition code flags.
— Carry (sec, clc)
—oVerflow (sey, clv)
— Interrupt (sel, cli)

Using sec, clc, sey, clv

 The C and V flags are sometimes
— set/cleared just before leaving a subroutine,

— then inspected by bcc, bcs, bvc and bvs
instructions after returning to the calling
routine

* This helps serve as a fast way to provide
status information to a calling routine.

f13

Doing Nothing

L
s

Tutorial 1

538

A RRARELIEEEEEE
SEEH SRR EEE

e gibe 11 fRigus
SR REEREEEEEE
338888 §F ¢l0es

t5 Speddsailenist
53885892 55835558

33ERERRLERET 215

The NOP instruction

* This instruction does no operation
* It occupies one byte

e |tis used as

— a timewaster
— padding for self-modifying code

The BRN instruction

 This instruction never branches.

* Itis used as
— a timewaster
— padding for self-modifying code
— a convenient way to hide an instruction in the
place of the single-byte offset.

* It occupies two bytes.

14

L
4

Tutorial 1

(/)
e
Q.
-
-
-
)
'
=

538
S RRARELIEEEEEE
SLEH DR FREE
e gibe 11 fRiaus
SR REEREEEEEE
28882 §F «lles
85 dpeddsailenis
53885892 55835558
33ERERRLERET 215

daa

Interrupts

« Caused by various conditions

 All but two can be disabled by setting the
Interrupt condition code flag.

* \When an interrupt occurs
— the Interrupt flag is set
— all reqgisters are pushed on the stack

— program execution jumps to a specified
location in memory

Interrupts

* There are seven kinds of interrupts
(in ascending order of priority).

Type Address
16896
— TOF 16899
— OCF 16902
16905
16908
— SWI 16911
16914

Description

serial communication interface
timer overflow

output compare flag

input capture flag
interrupt-request 1

software interrupt
non-maskable interrupt

* The Virtual MC-10 only emulates the SWI, OCF

and TOF interrupts

SCI

 The Serial Communications Interface is
not used by the MC-10.

TOF

* The timer overflow flag is set when the
counter contains all ones (65535), and will
jump to its address if the Interrupt flag is
Clear.

* TOF is cleared by reading from memory
location 9 (the counter).

* The Virtual MC-10 emulates this interrupt
(I think).

OCF

The output capture flag IS used by the MC-10
and Virtual MC-10.

It gets set when the output compare register
matches the free-running counter and will jump
to its address if the Interrupt flag is clear.

You can enable it by setting bit 2 of the TCSR
register (address 8)

OCEF is cleared by reading the TCSR and then
writing to the output compare register (locations
11 or 12) or during reset.

The Virtual MC-10 emulates this interrupt.

ICF

* This interrupt is used when bit O of port 2
IS configured as an input.

 The MC-10 uses it instead as an output to
the RS232C communication port, so this
iIsn’t really used.

IRQ1

* The IRQ1 pin is tied through a pull-up
resistor to +5V.

SWI

* This is known as the software interrupt.

* It is explicitly called by the user and will

always jump to its address and it cannot
be disabled by the interrupt flag

* |t is emulated by the Virtual MC-10

NMI

* The non-maskable interrupt can be

triggered from the expansion slot in the
back of the MC-10.

* |t is not disabled by the Interrupt flag.
* |t jJumps to location 16896.

The WAI instruction

* This instruction will save the reqgisters to
the stack, then wait for an interrupt.

* This is good for waiting for a timer to
expire if you have nothing else to do

The RTI instruction

* When an interrupt is called it saves all the
registers on the stack.

* The RTI instruction will restore the

registers and resume control back to the
main program.

* |t is equivalent to the following series of
instructions: pula, tap, pulb, pula, pulx, rts.

Sample Program

An audio recording was taken from the “The
Princess Bride” and run through a low-pass filter.

The resulting waveform was truncated so that
the speaker would be energized when the audio
went “above zero” and de-energized when the
audio goes “below zero” — not great for sound
quality, but that's all the MC-10 can do.

The results were encoded differentially, by
recording how long it took the audio to cross
zero — providing reasonable compression for
use with the MC-10.

Sample Program

(Plays audio in the background)

File Edit Format Yiew Help

Ehyte .equ 20480
sound .equ 20481

.org 20483 ;tell tasm to start at20483

clr shyte ;Clear sound byte

Tdx #taunt ; Toad start of movie quote

stx sound ;store into sound pointer

Tdaa #126 ; Toad '"jmp' dnstruction opcode

staa 16902 ;store into TOF vectar Note: Th|s program iS |arge,

Tdx #inter ; Toad interrupt location

stx 16903 ;store as address to jump to due tO the amount Of data

c1i ;enable interrupts
Tdaa #8 ;enable TOF

staa B so don't forget to set the load
e 9 RACK 6a BESTE - and EXEC addresses to 20483
Tdx sound ;increment sound pointer .

: If you try this program.

inx ;
cqx #raunte ;see if at end of sound segment
hls savsnd ;

s
Tdx #taunt srestart the taunt if at end
stx sound :
Tdaa shyte ;get the sound hyte

;

eora #%10000000 ;T1ip the sound bit

staa shyte istore for safekeeping

staa 49151 ;store into speaker/video select

Tdaa ,x ;get amount to sleep by

Wd%b #75 ymultiply by delay value (11.8kHz sample rate = 0.89MHz / 75)
mu

addd 9 ;add the offset to the timer

hita 8 ;read to clear the ToF (hut don't do anything with it).

std 11 ;store into output compare register

rti ;return from interrupt (hack to BASIC)

	Getting Started
	Hexadecimal Numbers
	Other Material
	MC-10 Hardware
	MC-10 Memory Map
	On-Chip Memory
	Video/Sound Control
	6803 Registers
	Accumulator
	6803 Registers - X
	6803 Registers - S
	67803 Registers - PC
	6803 Registers - CCR
	6803 Instructions
	Addressing Modes
	Cycle Counting
	Tutoril #1 - load/store
	Load/Store Opcodes
	Example Program
	Use TASM to compile
	Use Virtual MC-10 to read in
	Browse to get your object
	Look for TASM *.obj files
	Clear the screen
	Now run your program
	Here's the program and its output
	Using the debugger
	Tutorial #2 Increment and Decrement
	Increment instructions
	Decrement instructions
	Rollover
	Example program
	Tutorial #3 and #4 Addition
	Unsigned Addition
	Tutorial #3 unsigned addition
	Tutorial #4 Signed Addition
	Odometer Example
	8-bit Odometer
	8-bit Negation Instructions
	16-bit Odometer
	Signed arithmetic
	Negative Oerands
	Example #4 - Signed Addition
	Tutorial #5 Subtraction
	Tutorial #6 Branch Instructions
	Conditional Codes for Addition and Subtraction
	Comparison
	Branch Instructions
	Generic Branch Opccodes
	Unsigned Branch Opcodes(used after subtraction/comparison)
	Signed Branch Opcodes(used after subtraction/comparison)
	Example 6a Increment all values on screen
	Example 6b screen bubble sort
	Example 6c reverse Scroll
	Tutorial #7 Mask Instructions
	And,Or,Eor
	Binary constants and '%'
	Bit+example
	Tst+example
	Reading the keyboard
	Keys associated with 49151
	Example: is "L" pressed?
	Example: Direction Keys?
	Keys associated with 3
	Tutorial #8 Bit manipulation
	Clear Instructions
	Complement Instructions
	Logical Shifting
	Arithmetic Shift Right
	Rotating through the carry
	Keyvoard strobe example
	Video Modes
	Video Control
	6847 Major Mode 1
	Major Mode 1
	Major Mode 2
	Rotating the screen
	Tutorial #9 Multi-byte math
	Adding with Carry
	Subtracting with Carry
	Multiply Instruction
	Multi-byte Multiplication
	Example: Multiply the two 16-bit numbers
	Illustration 16-bit by 16-bit multiplication
	Program: Multiplying Tqo 16-bit Numbers
	Tutorial #10 Stack Operations
	The Stack
	Writing to the Stack
	Reading from the Stack
	Basic stack instructions
	Subroutines
	Stack Philosophy
	Tutorial #11 Transfer Instructions
	8-bit Transfers
	16-bit Transfers
	Transfer X <--> D
	Example hi-res graphics 128x96
	Tutorial #12 Flags
	Implicit Carry Flag Clearing
	Implicit oVerflow clearing
	Explicit Flag Clearing
	Using sec,clc,sev,clv
	Tutorial #13 Doing Nothing
	The BRN instructions
	Tutorial #14 Interrupts
	Sample Program

