
Assembly Language Programming
on the TRS-80 MC-10

Using the Virtual MC-10
and the TASM compiler

Getting Started

• Pre-requisites for the tutorial.
– Virtual MC-10 version 0.7 or higher
– Familiarity with MICROCOLOR BASIC 1.0

(this is the basic that comes with the MC-10)
– Basic knowledge of “hexadecimal numbers”
– A text editor. This tutorial uses the

“Notepad” editor that comes bundled with
Microsoft Windows.

Getting Started
• Download the Virtual MC-10

1. As of 2008, the emulator can be found at
http://www.geocities.com/emucompboy.

2. Find and download the “Virtual MC-10”
3. Follow any additional installation instructions

that come with the emulator
4. A good book on assembly is helpful, but

hopefully not required. I found William
Barden Jr.’s “Assembly Language on the
TRS-80 Color Computer” to be very helpful.

Hexadecimal Numbers
• Good tutorials exist on the web for hexadecimal

numbers.
• The Virtual MC-10 and the bundled TASM compiler use

a “$” pre-fix to distinguish a hexadecimal representation
of a number from its decimal equivalent.

• The tutorials slowly introduce hexadecimal (and binary)
numbers over time.

• The sections involving the video display modes and
memory map use hexadecimal numbers almost
exclusively.

• The Virtual MC-10 debug windows displays information
primarily with hexadecimal numbers, but usually also
displays their decimal equivalents.

Other Material
• A good book on assembly is helpful, but

hopefully not required.
• William Barden Jr.’s “Assembly Language

Programming on the TRS-80 Color Computer”
covers the MC-10’s “big brother” (the
MC6809E processor found in the CoCo).

• You may also find good information if you
search for “6800 assembly tutorial” on the
internet. The MC-10 uses a 6801 processor,
which has only a few additional instructions.

MC-10 Hardware
• The CPU: (Motorola MC6803)
• A video display chip (Motorola MC6847)
• On board memory shared between the MC6803

and MC6847) totalling 4K
• An input/ouput buffer to control the RS232-C

port and cassette port.
• A latch to control the TV’s speaker
• An expansion bus accessible by the CPU
• The infamous “rubber chicklet” (a.k.a. “rubber

chicken”) keyboard.

MC-10 Memory Map

On-chip RAM
Unused

4K Video RAM

16K Expansion

BASIC ROM

Video/Sound
Control

Mirror of ROM

Address
$00-$FF

$0100-$03FF

$4000-$4FFF

$5000-$8FFF

$9000-$BFFF

$C000-$DFFF

$E000-$FFFF

Component

On-Chip Memory
Port 1 Data Direction Register
Port 2 Data Direction Register

Port 1 Data Register
Port 2 Data Register

$00
$01
$02
$03

$04-$07 Unused
Timer Control and Status

16-bit counter
Output Compare Register

$08
$09-$0A
$0B-$0C

Input Capture Register$0D-$0E
$0F Unused

Rate and Mode Control$10
Transceiver Control/Status$11

Receive Data$12
Transmit Data$13

RAM Control Register$14
Internal Registers$15-$1F

$20-$7F Unused
User RAM$80-$FF

FunctionAddress
Enables Keyboard (Set to 255)
Enables Keyboard (Set to 255)

Keystrobe
Keystrobe

Working!
Working!
Working!

Heavily used by BASIC

Not emulated by VMC-10
Not emulated by VMC-10
Not emulated by VMC-10
Not emulated by VMC-10
Not emulated by VMC-10
Not emulated by VMC-10

Not emulated by VMC-10

Description

Video/Sound Control

• Operation is controlled by writing to any memory location between $9000-
$BFFF (36864-49151).

• The convention used by MC-10 programmers was to use $BFFF. This
would have allowed programs to be backwards-compatible on any future
version of the MC-10.

• The speaker is energized / de-energized by setting bit 7 of the control
register.

• The remaining bits controls the various graphics mode of the MC6847 chip.
(we will cover the graphics modes in a later section)

49151
($BFFF)

Sound CSS A/G GM0 GM1 GM2
INT/EXT

N/CN/C

7 6 5 4 3 2 01

6803 Registers

1 1 H I N Z V C

PC

S

X

D
15 078

A B

15

15

15

0

0

0

07

CCR

Accumulator

D
15 078

A B

15 0

Register D is known as the “double accumulator”
It a 16-bit register on which you can perform addition/subtraction.
You can also shift it left or right.

Register D is broken up into two eight bit registers:
•A, the “high“ byte
•B, the “low” byte
You can perform any arithmetic or bitwise operation on the 8-bit registers
Unsigned multiplication of A with B can be performed, the result is stored
in-place in the D register. There are no division instructions.

6803 Registers

X
15 0

Register X is a 16-bit register which contains an address
you can read from or write to.

You can also add a constant positive 8-bit offset to it and compare it
with other 16-bit values.

6803 Registers

S
15 0

Register S is known as the stack pointer.

It is intended to contain an address to a contiguous section of memory
known as the stack. The stack can only grow or shrink in size from one
end. You can “push” or “pull” information from the top of the stack.

The stack is primarily used to keep track of subroutine addresses,
local variables, or temporary storage.

6803 Registers

PC
15 0

Register PC is the program counter

It contains the address of the next instruction to be executed.

6803 Registers

1 1 H I N Z V C
07

CCR

Register CCR is the 8-bit condition code register.

The two most significant bits are always set to one.
The other six bits are updated after every instruction to contain status information.

Half-carry - facilitates binary coded decimal arithmetic
It is used by the DAA instruction.

•Interrupt - prevents the timers from redirecting the PC
counter to a different code segment

•Negative - indicates that a negative result occurred.
•Zero - indicates that the result of the last instruction was zero.
•oVerflow - indicates that the result could not be fit into an 8-bit signed number.
•Carry - indicates that the result could not be fit into an 8-bit unsigned number.

6803 Instructions
aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Addressing Modes
Syntax Mode Instruction Size (bytes)
<opcode> (inherent) 1 byte
<opcode> #value (immediate) 1 byte + 1 or 2 byte value
<opcode> address (direct) 1 byte + 1 byte address
<opcode> address (extended) 1 byte + 2 byte address
<opcode> offset,x (indexed) 1 byte + 1 byte offset
<branch op> address (relative) 1 byte + 1 byte offset

Inherent - does not take an operand
Immediate - operand as data
Direct - operand as address to on-chip memory (<256)
Extended - operand as an address to off-chip memory (>255)
Indexed - add positive single byte offset to x, use result

as address
Relative - operand as an address up to 128 bytes before or 127 bytes

after the next instruction.

Cycle Counting

• Indexed and extended instructions will
take the same number of clock cycles.

• Direct addressing instructions take one
clock cycle less than either indexed or
extended instructions.

• Immediate addressing instructions take
one less cycle than direct addressing.

Tutorial #1 – load/store
aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Load/Store Opcodes
ldaa - load 8-bit accumulator "a“
ldab - load 8-bit accumulator "b“
ldd - load 16-bit double accumulator "d“
ldx - load16-bit index register "x“
lds - load16-bit index register "x“

staa - store accumulator a
stab - store accumulator d
std - store double accumulator
stx - store x register
sts - store s register

Load/Store Opcodes
ldaa, ldab - can use direct, extended, indexed,

or 1 byte immediate.
ldd, ldx, lds - can use direct, extended, indexed,

or 2 byte immediate.

staa, stab, std, stx, sts
- can use only direct, extended or indexed modes.

Example Program
We’ll ignore the S, PC, and CCR registers for now, and just focus on the
accumulator and index registers…we’ll learn more about the stack and
condition codes later.

Here’s an example – note the spaces at the beginning of each line.
The MC-10’s text display starts at location $4000 (16384) and ends
at $41FF (16895).

Let’s write 72(H) and 73(I) to the screen in various locations:

Use TASM to compile

Use Virtual MC-10 to read in

Browse to get your object

Look for TASM *.obj files

Open the obj file

Now set where it should go

Clear the screen

Now run your program

Ta-da!

Here’s the program and its output.

Using the debugger
• The Virtual MC-10’s debugger has several

windows:
– Register
– Memory
– History
– Disassembly
– Breaks
– LST (program listing)
– Script
– Map/Level

Using the debugger
• The Virtual MC-10’s debugger has several

windows:
– Register
– Memory
– History
– Disassembly
– Breaks
– LST (program listing)
– Script
– Map/Level

Tutorial #2
Increment and Decrement

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Increment instructions
inca – increment register a (a = a+1)
incb – increment register b (b = b+1)
inx – increment register x (x = x+1)
ins – increment register s (s = s+1)

inc address – increment contents of specified
2 byte address

inc offset,x – increment contents of address
pointed to by adding X and the

single-byte offset

Decrement instructions
deca – decrement register a (a = a - 1)
decb – decrement register b (b = b - 1)
dex – decrement register x (x = x - 1)
des – decrement register s (s = s - 1)

dec address – decrement contents of the specified
2 byte address

dec offset,x – decrement contents of address
pointed to by adding x and the

single-byte offset

Rollover

• Incrementing a byte that contains the
highest value (255) will roll it over to 0.

• Decrementing a byte that contains the
lowest value (0) will roll it back to 255.

• Two-byte words (x, s) will “roll over”
between the values of 0 and 65535

Example program

Output

Output

65
66
67
255
0

Tutorial #3 and #4
Addition

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Unsigned Addition

• Addition shares the same “rollover”
properties as incrementing.

• You may add values to the A, B, or D
accumulators (adda, addb, addd)

• You can add to the contents of the A
register by the contents of the B (aba).

• You can add the B register (unsigned) to
the contents of the X register (abx)

Tutorial #3 – unsigned addition

Tutorial #4 Signed Addition

• The “rollover” property can be used to
construct negative numbers.

• We will first discuss an odometer which
rolls over at 1000000 miles.

• We’ll then apply this to our 8-bit and 16-bit
accumulators which rollover at 256 and
65536.

Odometer Example
• Consider an old

fashioned odometer
that goes from
000000 to 999999.

• If you drive exactly
1000000, 2000000,
3000000 or any
multiple of 1000000
miles, the odometer
will go back to
000000.

9
0

9
0

9
0

9
0

9
0

9
0

Odometer Example
• If your odometer is at,

say, 83014 miles, and
you drive exactly
1000000 miles, then
the odometer will still
read 83014.

083014

083014

+1000000 miles

Odometer Example
• If your odometer is at,

say, 83014 miles, and
you drive exactly
999999 miles, then
the odometer will read
read 83013.

• Note that adding
999999 is the same
as adding -1.

083014

083013
+999999

X

X-1
+999999

X

X-1
-1

Odometer Example
• If your odometer is at,

say, 83014 miles, and
you drive exactly
999998 miles, then
the odometer will read
read 83012.

• Note that adding
999998 is the same
as adding -2.

083014

083012
+999998

X

X-2
+999998

X

X-2
-2

Odometer Example
• This suggests the following relationship:

– X = 1000000 – X
• Thus if your “odometer” only has positive

numbers, you can use the “rollover” property to
find the equivalent negative number.

Odometer Example
• Let’s say your odometer is

at 999998 miles. If you
drive 5 miles, you’ll end up
with a reading of 000003
miles.

• Note the equivalency again
of 999998 = -2

999998

000003
+ 5

-2

3
+ 5

8-bit Odometer
• A single byte roll-over occurs at 256.
• Thus,

-X = 256 – X (single-byte)
• By convention, numbers 0, 1, 2, …,127 are

considered “positive”
• Numbers 128, 129, 130, …, 253, 254, 255 are

considered “negative” and correspond to values
-128, -127, -126, …, -3, -2, -1.

• Note that +128 cannot be represented with this
convention, but -128 can.

8-bit Negation Instructions

• You can negate the value of either the A or
B register (nega, negb)

• You can negate an address
ldaa #10 ; A holds 10
nega ; A holds -10 (246 = 256-10)
neg 16384 ;negate first screen char
neg ,X ; negate what X points to

16-bit Odometer
• A double byte roll-over occurs at 65536.
• Thus,

-X = 65536 – X (double-byte)
• By convention, numbers 0, 1, 2, …, 32767 are

considered “positive”
• Numbers 32768, 32769, 32770, …, 65533, 65534,

65535 are considered “negative” and correspond to
values -32768, -32767, -32766, …, -3, -2, -1.

• Note that -32768 is in this set, but that +32768 cannot
be.

• Sadly, there is no 16-bit negation instruction

Signed arithmetic

Like driving the car, addition and
subtraction with rollover don’t really care if
you consider your numbers as signed or
unsigned. The computer will blindly
increment or decrement its “internal
odometer” the specified number of times,
and leave you with the result, which you
can use either as signed or unsigned
depending on your needs.

Negative Operands

• The TASM compiler will gladly accept
negative numbers to instructions that take
immediate operands.

• It will automatically convert them to their
‘unsigned’ equivalents depending on
whether the particular instruction expects
a 8-bit or 16-bit operand.

• ldaa #-1 -> ldaa #255
• addd #-3 -> addd #65533

Example #4 - Signed Addition

Tutorial #5
Subtraction

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Subtraction
• Subtraction shares the same “rollover”

properties as decrementing.
• You may subtract

– values from the A, B, or D accumulators (suba, subb,
subd)

– the contents of the A register by the contents of the B.
(sba)

• Unfortunately, there is no corresponding sbx
instruction that subtracts the B register from the
X.

Example #5
Subtraction

Tutorial #6
Branch Instructions

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Condition Codes
for Addition and Subtraction

• The “Z” bit is set when the result is zero
• The “N” bit is set when the result is

“negative”
• The “C” bit is set when the operation rolls

through zero.
• The “V” bit is set when the operation rolls

through 32768.

Comparison
• Comparison sets condition codes exactly like

subtraction, except that the result is discarded
and not stored back in the registers.

• You may compare
– the values from the A or B accumulators (cmpa,

cmpb)
– the contents of the A register to the contents of the B

(cba)
– The value of the X register (cpx)

• Unfortunately, you can’t compare the value of
the D register (but you may subtract it).

Branch Instructions

• Usually performed after subtraction or
comparing two numbers

• Branches can reach only a small distance
from the location of the next instruction (up
to 127 bytes ahead or 128 bytes behind)

• Larger branches require an explicit,
unconditional, jump to memory (jmp)

Generic Branch Opcodes
• bra – branch always
• brn – branch never*
• beq – branch if equal to zero (Z=1)
• bne – branch if not equal to zero (Z=0)
• bmi – branch if minus (N=1)
• bpl – branch if plus or zero (N=0)
• bcs – branch if carry set (C=1)
• bcc – branch if carry cleared (C=0)
• bvs – branch if overflow set (V=1)
• bvc – branch if overflow cleared (V=0)

*brn is usually used as padding or a timewaster

Unsigned Branch Opcodes
(used after subtraction/comparison)
• blo – branch if lower
• bls – branch if lower or same
• bhi – branch if higher
• bhs – branch if higher or same

• beq – branch if equal
• bne – branch if not equal

Signed Branch Opcodes
(used after subtraction/comparison)
• blt – branch if less than
• ble – branch if less than or equal to
• bgt – branch if greater than
• bge – branch if less than or equal to

• beq – branch if equal
• bne – branch if not equal

Example 6a
Increment all values on screen

Example 6b
screen bubble sort

Example 6c
Reverse Scroll

Tutorial #7
Mask Instructions

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

And, Or, Eor

• These are bitwise operations with the
usual properties:
– And with 0 -> 0.
– Or with 1 -> 1.
– Eor with 1 -> flip the value.
– Otherwise, leave value unchanged.

• They work on either the A or B register
(anda, andb, oraa, orab, eora, eorb).

Binary constants and ‘%’.

• You can type in
a binary number
directly by using
the ‘%’ prefix.

Bit

• Same as “anda” or an “andb” instruction
except the result is discarded.

• The condition codes can be used to
inspect if certain bits were set.

• Since the result is discarded, you can
check the A or B register for various bits
without needing to save the value.

Bit Example

ldaa #%00110110 ; % is binary prefix

bita #%01000000 ; see if bit 6 is set.

bne bitwasset ; go if bit 6 was set.

bita #%10001000 ; set if either bit 7 or 4 is set.
beq bothwerezero ; go if both bits were zero

Tst

• Sets the N and Z condition codes
depending on the data.

• You can test the A or B registers (tsta,
tstb), or a value in memory (tst)

Bit example

Reading the keyboard

• Reading the keyboard involves writing to
location 2 and reading from either location
49151 or 3.

• The keys are grouped in sections of 8.
• You’ll use logic-0 values to determine

which key is pressed.

Keys associated with 49151
0 1 2 3 4 5 6 7

0

1

2

3

4

5

Example: is “L” pressed?
0 1 2 3 4 5 6 7

0
1
2
3
4
5

ldaa #%11101111 ;bit 4 corresponds to ‘L’
staa 2
ldaa 49151
bita #%00000010
beq keypressed

corresponding bit
(read from 49151)

bits to inspect (write to 2)

Example: is “X” pressed?
0 1 2 3 4 5 6 7

0
1
2
3
4
5

ldaa #%11111110 ;bit 0 corresponds to ‘X’
staa 2
ldaa 49151
bita #%00001000
beq keypressed

corresponding bit
(read from 49151)

bits to inspect (write to 2)

Example: Direction keys?
0 1 2 3 4 5 6 7

0
1
2
3
4
5

ldaa #%01111111
staa 2
ldaa 49151
bita #%00000100
beq keyW
ldaa #%11111011
staa 2
ldaa 49151
bita #%00001000
beq keyZ
ldaa #%11111101
staa 2
ldaa 49151
bita #%00000001
beq keyA
ldaa #%11110111
staa 2
ldaa 49151
bita #%00000100
beq keyS

Keys associated with 3

0 1 2 3 4 5 6 7

1

bits to inspect (write to 2)

corresponding bit
(read from 3)

;is BREAK pressed?
ldaa #%11111011 ;bit 2 corresponds to ‘break’
staa 2
ldaa 3
bita #%00000010 ;bit 1 cleared for CTL, BRK, and SHIFT
beq keypressed

Tutorial #8
Bit manipulation

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Clear Instructions

• Equivalent to loading A or B with zero
(clra, clrb)

• You may clear a memory address directly
through either the extended or indexed
modes (clr)

Complement Instructions

• Flips all the bits in either an accumulator
(coma, comb) or register or memory
address (com)

Logical Shifting
• A quick way of multiplying/dividing an unsigned

number by 2.
• You can shift the accumulators or memory

left/right by 1 bit.
(lsla, lslb, lsld, lsl; lsra, lsrb, lsrd, lsr)

• Zero is shifted in, and the remaining bit is shifted
into the carry.

C

0

0

Clsl
lsr

´2

÷2

Arithmetic Shift Right
• A quick way of dividing a signed number by 2.
• You can shift the A or B accumulator or memory

right by 1 bit. (asra, asrb, asr)
• The “sign” bit is left unchanged, and the

remaining bit is shifted into the carry.
• Signed multiplication by 2 can be done using the

lsl instructions

Casr ÷2

Rotating through the carry

• You can shift the A or B accumulator or
memory left/right by 1 bit.
(rola, rolb, rol; rora, rorb, ror)

• The carry is shifted in, and the remaining
bit is shifted into the carry.

C

Crol

ror

Keyboard
Strobe

Example

Video Modes
• The MC6847 is capable of two major

modes of execution
– Major Mode 1:

A fully-interchangeable 32x16 character
format

– Major mode 2:
A dedicated graphics mode

Video Control
49151

($BFFF) Sound CSS A/G GM0 GM1 GM2
INT/EXT

N/CN/C

7 6 5 4 3 2 01

Setting bit 5 of the control register
puts the MC6847 into “Major Mode
2” which is divided into a two color
(resolution graphics) or four color
(color graphics) mode.

Clearing bit 5 of the control register
puts the MC6847 into “Major Mode
1” which can display basic text and
limited graphics characters.

• The MC6847 INT/EXT pin is physically tied to the GM2 pin.

6847 Major Mode 1

6847 Major Mode 1
• The MC6847 is capable of simultaneously displaying the following all on the same screen on a character-by-

character basis:
– 64 Internally or 64 externally generated alpha-numeric characters of any of the four color schemes

• Dark green on light green
• Light green on dark green
• Dark orange on light orange
• Light orange on dark orange

– Any 2x2 or 2x3 graphics character of any one of the eight colors on black
– (512 alpha-numerics + 1024 graphics characters = 1152 possible characters)
– [This would correspond to 11 (really 10.5) bits to uniquely specify each character]

6847 Major Mode 1
• The MC-10 uses only 8-bits to specify

the characters in major mode 1.
– bit7 of the incoming data character is

wired to control the A/S line. This lets you
switch between semi-graphics and alpha-
numeric characters

– bit 6 of the incoming data character is set
to control the INV line (which is used in
alpha-numeric mode to determine if a
character’s color scheme is inverted)

• Only text and inverted text of one color can be
displayed on the screen with any 2x2 any-colored-
character block because the color select pin (CSS) is
globally settable.

• Having the CSS restricted to a global setting restricts
the color palette of the 2x3 blocks to either green-
yellow-blue-red or buff-cyan-magenta-orange.

• Since bit 7 of the incoming data character is tied to the
A/S pin, the color selection of the 2x3 blocks are
restricted to either red/blue or magenta/orange.

• Since the INT/EXT line is also globally settable, the 2x3
character blocks must be used in conjunction with the
mode for an external character ROM. When bit7 goes
low, the chip tries to use the external character ROM
(which is not implemented on the MC-10).

6847 Major Mode 1
The remaining control pins that govern the first
major mode (CSS, INT/EXT) are governed by
writing to the Video Control register and are not
selectable by the data character.

Major Mode 1
store at $BFFF (49151)

SG4 64x32

$4000-$41FF
16384-16895

$BFFF←$00
POKE 49151, 0

SG4 64x32

$4000-$41FF
16384-16895

$BFFF←$40
POKE 49151,64

SG6 64x48

$4000-$41FF
16384-16895

$BFFF←$0C
POKE 49151,12

SG6 64x48

$4000-$41FF
16384-16895

$BFFF←$4C
POKE 49151,74

Major Mode 2
• Since the CSS pin is globally settable only one palette at a time is displayed on-screen for

the graphics modes.
– Resolution graphics modes: green/dark green or buff/black
– Color graphics modes: green-yellow-blue-red or buff-cyan-magenta-orange

• The MC6847 would otherwise allow you to switch between these color schemes horizontally
every eight cells (resolution graphics) or four cells (color graphics)

Major Mode 2

• The on-board Video RAM
for the MC-10 is 4K in size
(12 bit address: $4000-
$4FFF).

• Thus only 12 of the 13
address lines were wired to
the MC6847. (DA12 is
unconnected)

• CG6 and RG6 will paint
data from $4000 - $47FF
instead of $5000 - $57FF.

Major Mode 2
store at $BFFF (49151)

RG1 128x64

$4000-$43FF
16384-17407

$BFFF←$30
POKE 49151,48

RG2 128x96

$4000-$45FF
16384-17919

$BFFF←$38
POKE 49151,56

RG3 128x192

$4000-$4BFF
16384-19455

$BFFF←$34
POKE 49151,52

RG6 256x192

$4000-$4FFF
16384-20479

$BFFF←$3C
POKE 49151,60

Major Mode 2
store at $BFFF (49151)

RG1 128x64

$4000-$43FF
16384-17407

$BFFF←$70
POKE 49151,112

RG2 128x96

$4000-$45FF
16384-17919

$BFFF←$78
POKE 49151,120

RG3 128x192

$4000-$4BFF
16384-19455

$BFFF←$74
POKE 49151,116

RG6 256x192

$4000-$4FFF
16384-20479

$BFFF←$7C
POKE 49151,124

Major Mode 2
store at $BFFF (49151)

CG1 64x64

$4000-$43FF
16384-17407

$BFFF←$20
POKE 49151,32

CG2 128x64

$4000-$47FF
16384-18431

$BFFF←$28
POKE 49151,40

CG3 128x96

$4000-$4BFF
16384-19455

$BFFF←$24
POKE 49151,36

CG6 128x192

$4000-$4FFF
16384-20479

$BFFF←$2C
POKE 49151,44

49151
($BFFF)

Major Mode 2
store at $BFFF (49151)

CG1 64x64

$4000-$43FF
16384-17407

$BFFF←$60
POKE 49151,96

CG2 128x64

$4000-$47FF
16384-18431

$BFFF←$68
POKE 49151,104

CG3 128x96

$4000-$4BFF
16384-19455

$BFFF←$64
POKE 49151,100

CG6 128x192

$4000-$4FFF
16384-20479

$BFFF←$6C
POKE 49151,108

Rotating the screen

Tutorial #9
Multi-byte math

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Adding with Carry

• The add with carry instructions (adca,
adcb) will add the A or B register with the
carry bit.

• Since the carry is set when the result of an
addition instruction doesn’t fit in 8 or 16
bits, you can use the adc instructions to
continue adding the larger bytes.

Adding with Carry

Byte_a0Byte_a1Byte_a2Byte_a3
Byte_b3 Byte_b2 Byte_b1 Byte_b0

Byte_c0Byte_c1Byte_c2Byte_c3

ldaa Byte_a0 ;get least significant byte
adda Byte_b0 ;add with corresponding byte (carry set if result rolled over)
staa Byte_c0 ;store result

ldaa Byte_a1 ;get next significant byte
adca Byte_b1 ;add with corresponding byte (+1 if carry bit set)
staa Byte_c1 ;store result

ldaa Byte_a2 ;carrying forward...
adca Byte_b2
staa Byte_c2

ldaa Byte_a3 ;carrying forward...
adca Byte_b3
staa Byte_c3

Subtracting with Carry

• The subtract with carry instructions (sbca,
sbcb) will subtract from the A or B register
along with the carry bit.

• Since the carry is set when the result of an
subtraction instruction doesn’t fit in 8 or 16
bits, you can use the sbc instructions to
continue subtracting the larger bytes.

Subtracting with Carry

Byte_a0Byte_a1Byte_a2Byte_a3
Byte_b3 Byte_b2 Byte_b1 Byte_b0

Byte_c0Byte_c1Byte_c2Byte_c3

ldaa Byte_a0 ;get least significant byte
suba Byte_b0 ;subtract corresponding byte (carry set if result rolled over)
staa Byte_c0 ;store result

ldaa Byte_a1 ;get next significant byte
sbca Byte_b1 ;subtract corresponding byte (additional -1 if carry bit set)
staa Byte_c1 ;store result

ldaa Byte_a2 ;carrying forward...
sbca Byte_b2
staa Byte_c2

ldaa Byte_a3 ;carrying forward...
sbca Byte_b3
staa Byte_c3

Multiply Instruction

• Multiplies register A with B and stores the
result back into the D register.

• It assumes A and B are unsigned.
• Since the largest possible multiplication is

255 x 255 = 65025, the result will always
fit into the D register

Multi-byte Multiplication

• Can be performed similar to long
multiplication
– Compute product of pairs of bytes
– Add the results together

Example: Multiply the two 16-bit numbers stored
at M and N and save the product at location P.

(from http://www.cs.ucf.edu/~tkocak/eel4767/lec4.ppt)

• First, rewrite M and N as MHML and NHNL

where
– MH and NH are upper 8 bits of M and N respectively
– ML and NL are lower 8 bits of M and N respectively

• MH and ML are stored at M and M+1 respectively
• NH and NL are stored at N and N+1 respectively

Illustration
16-bit by 16-bit multiplication

(from http://www.cs.ucf.edu/~tkocak/eel4767/lec4.ppt)

MLNL

MHNL

MLNH

MHNH

M × N

8-bit 8-bit 8-bit 8-bit

address P P+1 P+2 P+3

MSB LSB

upper byte lower byte

upper byte lower byte

upper byte lower byte

upper byte lower byte

Program:
Multiplying Two 16-bit Numbers

(from http://www.cs.ucf.edu/~tkocak/eel4767/lec4.ppt)

ldaa M+1 ; place ML in A
ldab N+1 ; place NL in B
mul ; compute ML × NL
std P+2 ; save ML × NL to memory locations P+2 and P+3
ldaa M ; place MH in A
ldab N ; place NH in B
mul ; compute MH × NH
std P ; save MH × NH to memory locations P and P+1
ldaa M ; place MH in A
ldab N+1 ; place NL in B
mul ; compute MH × NL
addd P+1 ; add MH × NL to memory locations P+1 and P+2
std P+1 ;
ldaa P ; add the C flag to memory location P
adca #0 ;
staa P ;
ldaa M+1 ; place ML in A
ldab N ; place NH in B
mul ; compute ML × NH
addd P+1 ; add ML × NH to memory locations P+1 and P+2
ldaa P ; add the C flag to memory location P
adca #0 ;
staa P ;

Tutorial #10
Stack Operations

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

The Stack
• Contiguous area of

memory used to keep
track of subroutines and
temporary variables.

• It grows and shrinks from
one end.

• The S register points to
the first empty byte at the
top.

S top

bottom

Writing to the Stack
• When you save (or “push”) bytes to the stack,

the 6803 will
– decrement the S register by the number of bytes
– Store the bytes to the top of the stack

S top

bottom

byte1
S top

bottom

byte1
S top

bottom

byte2

Reading from the Stack
• When you retrieve (or “pull”) bytes from the

stack, the 6803 will
– get the bytes to the top of the stack
– increment the S register by the number of bytes

S top

bottom

byte1
S top

bottom

byte1
S top

bottom

byte2

Basic stack instructions

• You can:
– push/pull either accumulator to/from the stack

(psha, pshb; pula, pulb)
– push/pull the index register to/from the stack

(pshx, pulx)
– increment or decrement the stack pointer

without any data transfer (ins, des)
• The condition codes are not affected by

these instructions.

Subroutines
• You can either branch to a subroutine (bsr)

or jump to a subroutine (jsr). The MC-10
will push the PC location of the next
instruction to the stack, then jump to the
specified destination.

• Subroutines are finished with a return from
subroutine instruction (rts) which pulls the
previously saved location from the stack
and jumps to the location.

Stack Philosophy

• Use the stack
– to store intermediate variables.
– to protect or preserve register values between

the caller and the subroutine

Tutorial #11
Transfer instructions

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

8-bit Transfers

• You can transfer between accumulators
– tba transfer b to a
– tab transfer a to b

• You can transfer condition codes
– tpa transfer condition codes to a
– tap transfer a to condition codes

16-bit Transfers
• You can transfer the index/stack pointers

– tsx transfer (S+1) to X
– txs transfer (X-1) to S

• The +1 and -1 occurs so that X will point to
the top of stack, and S will point to the first
empty byte.

0,X
S Top (X)

1,X
2,X
3,X
4,X
…

There is no direct way to transfer
between the X and D registers

• You can push and pull the values of the X and D
registers on the stack to load between them:

Transfer X to D:
pshx ;put X on stack
pula ;load A with X’s high byte
pulb ;load B with X’s low byte

Transfer D to X:
pshb ;put low-byte on stack
psha ;put high-byte on stack
pulx ;load X from stack

Transferring D to X
pshb psha pulx

S top

bottom

B
S top

bottom

B
S top

bottom

A

Transferring X to D
pshx pula pulb

S top

bottom

X (low)
X (high)

S top

bottom

X (low)S top

bottom

Example hi-res graphics (128x96)
program similar to the “SPARKLE”
program in the MC-10 BASIC manual

Tutorial #12
Flags

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Implicit Carry Flag Clearing

• The carry is cleared by
– clr, clra, clrb
– tst, tsta, tstb

• The carry is set by
– com, coma, comb

Implicit oVerflow clearing
• The oVerflow flag is cleared by

– ldaa, ldab, ldd, ldx, lds
– staa, stab, std, stx, sts
– anda, oraa, eora, bita
– andb, orab, eorb, bitb
– clr, clra, clrb
– tst, tsta, tstb
– com, coma, comb
– tab, tba

Explicit Flag Clearing

• You can explicitly set and clear certain
condition code flags.
– Carry (sec, clc)
– oVerflow (sev, clv)
– Interrupt (sei, cli)

Using sec, clc, sev, clv

• The C and V flags are sometimes
– set/cleared just before leaving a subroutine,
– then inspected by bcc, bcs, bvc and bvs

instructions after returning to the calling
routine

• This helps serve as a fast way to provide
status information to a calling routine.

Tutorial #13
Doing Nothing

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

The NOP instruction

• This instruction does no operation
• It occupies one byte
• It is used as

– a timewaster
– padding for self-modifying code

The BRN instruction

• This instruction never branches.
• It is used as

– a timewaster
– padding for self-modifying code
– a convenient way to hide an instruction in the

place of the single-byte offset.
• It occupies two bytes.

Tutorial #14
Interrupts

aba beq bra daa jmp mul rol staa tst
abx bne brn dec jsr rola stab tsta
adca bcc deca neg rolb std tstb
adcb bcs cba decb ldaa nega ror sts
adda bhi clc des ldab negb rora stx wai
addb bhs cli dex ldd nop rorb suba
addd blo clr lds rti subb
anda bls clra eora ldx oraa rts subd
andb bge clrb eorb lsl orab swi
asr bgt clv lsla sba
asra ble cmpa inc lslb psha sbca tab
asrb blt cmpb inca lsld pshb sbcb tap

bmi cpx incb lsr pshx sec tba
bita bpl com ins lsra pula sei tpa
bitb bvc coma inx lsrb pulb sev tsx
bsr bvs comb lsrd pulx txs

Interrupts

• Caused by various conditions
• All but two can be disabled by setting the

Interrupt condition code flag.
• When an interrupt occurs

– the Interrupt flag is set
– all registers are pushed on the stack
– program execution jumps to a specified

location in memory

Interrupts
• There are seven kinds of interrupts

(in ascending order of priority).
Type Address Description

– SCI 16896 serial communication interface
– TOF 16899 timer overflow
– OCF 16902 output compare flag
– ICF 16905 input capture flag
– IRQ1 16908 interrupt-request 1
– SWI 16911 software interrupt
– NMI 16914 non-maskable interrupt

• The Virtual MC-10 only emulates the SWI, OCF
and TOF interrupts

SCI

• The Serial Communications Interface is
not used by the MC-10.

• It is not emulated by the Virtual MC-10.

TOF

• The timer overflow flag is set when the
counter contains all ones (65535), and will
jump to its address if the Interrupt flag is
clear.

• TOF is cleared by reading from memory
location 9 (the counter).

• The Virtual MC-10 emulates this interrupt
(I think).

OCF
• The output capture flag IS used by the MC-10

and Virtual MC-10.
• It gets set when the output compare register

matches the free-running counter and will jump
to its address if the Interrupt flag is clear.

• You can enable it by setting bit 2 of the TCSR
register (address 8)

• OCF is cleared by reading the TCSR and then
writing to the output compare register (locations
11 or 12) or during reset.

• The Virtual MC-10 emulates this interrupt.

ICF

• This interrupt is used when bit 0 of port 2
is configured as an input.

• The MC-10 uses it instead as an output to
the RS232C communication port, so this
isn’t really used.

• The Virtual MC-10 doesn’t use this
interrupt.

IRQ1

• This interrupt is not implemented by the
MC-10.

• The IRQ1 pin is tied through a pull-up
resistor to +5V.

SWI

• This is known as the software interrupt.
• It is explicitly called by the user and will

always jump to its address and it cannot
be disabled by the interrupt flag

• It is emulated by the Virtual MC-10

NMI

• The non-maskable interrupt can be
triggered from the expansion slot in the
back of the MC-10.

• It is not disabled by the Interrupt flag.
• It jumps to location 16896.
• The Virtual MC-10 does not make use of

this interrupt

The WAI instruction

• This instruction will save the registers to
the stack, then wait for an interrupt.

• This is good for waiting for a timer to
expire if you have nothing else to do

The RTI instruction

• When an interrupt is called it saves all the
registers on the stack.

• The RTI instruction will restore the
registers and resume control back to the
main program.

• It is equivalent to the following series of
instructions: pula, tap, pulb, pula, pulx, rts.

Sample Program
• An audio recording was taken from the “The

Princess Bride” and run through a low-pass filter.
• The resulting waveform was truncated so that

the speaker would be energized when the audio
went “above zero” and de-energized when the
audio goes “below zero” – not great for sound
quality, but that’s all the MC-10 can do.

• The results were encoded differentially, by
recording how long it took the audio to cross
zero – providing reasonable compression for
use with the MC-10.

Sample Program
(Plays audio in the background)

Note: This program is large,
due to the amount of data,
so don’t forget to set the load
and EXEC addresses to 20483
If you try this program.

	Getting Started
	Hexadecimal Numbers
	Other Material
	MC-10 Hardware
	MC-10 Memory Map
	On-Chip Memory
	Video/Sound Control
	6803 Registers
	Accumulator
	6803 Registers - X
	6803 Registers - S
	67803 Registers - PC
	6803 Registers - CCR
	6803 Instructions
	Addressing Modes
	Cycle Counting
	Tutoril #1 - load/store
	Load/Store Opcodes
	Example Program
	Use TASM to compile
	Use Virtual MC-10 to read in
	Browse to get your object
	Look for TASM *.obj files
	Clear the screen
	Now run your program
	Here's the program and its output
	Using the debugger
	Tutorial #2 Increment and Decrement
	Increment instructions
	Decrement instructions
	Rollover
	Example program
	Tutorial #3 and #4 Addition
	Unsigned Addition
	Tutorial #3 unsigned addition
	Tutorial #4 Signed Addition
	Odometer Example
	8-bit Odometer
	8-bit Negation Instructions
	16-bit Odometer
	Signed arithmetic
	Negative Oerands
	Example #4 - Signed Addition
	Tutorial #5 Subtraction
	Tutorial #6 Branch Instructions
	Conditional Codes for Addition and Subtraction
	Comparison
	Branch Instructions
	Generic Branch Opccodes
	Unsigned Branch Opcodes(used after subtraction/comparison)
	Signed Branch Opcodes(used after subtraction/comparison)
	Example 6a Increment all values on screen
	Example 6b screen bubble sort
	Example 6c reverse Scroll
	Tutorial #7 Mask Instructions
	And,Or,Eor
	Binary constants and '%'
	Bit+example
	Tst+example
	Reading the keyboard
	Keys associated with 49151
	Example: is "L" pressed?
	Example: Direction Keys?
	Keys associated with 3
	Tutorial #8 Bit manipulation
	Clear Instructions
	Complement Instructions
	Logical Shifting
	Arithmetic Shift Right
	Rotating through the carry
	Keyvoard strobe example
	Video Modes
	Video Control
	6847 Major Mode 1
	Major Mode 1
	Major Mode 2
	Rotating the screen
	Tutorial #9 Multi-byte math
	Adding with Carry
	Subtracting with Carry
	Multiply Instruction
	Multi-byte Multiplication
	Example: Multiply the two 16-bit numbers
	Illustration 16-bit by 16-bit multiplication
	Program: Multiplying Tqo 16-bit Numbers
	Tutorial #10 Stack Operations
	The Stack
	Writing to the Stack
	Reading from the Stack
	Basic stack instructions
	Subroutines
	Stack Philosophy
	Tutorial #11 Transfer Instructions
	8-bit Transfers
	16-bit Transfers
	Transfer X <--> D
	Example hi-res graphics 128x96
	Tutorial #12 Flags
	Implicit Carry Flag Clearing
	Implicit oVerflow clearing
	Explicit Flag Clearing
	Using sec,clc,sev,clv
	Tutorial #13 Doing Nothing
	The BRN instructions
	Tutorial #14 Interrupts
	Sample Program

