
;(16 bit division), Fast divide by 10

;https://forums.atariage.com/blogs/entry/11044-16-bit-division-

fast-divide-by-10/

;;

; UNSIGNED DIVIDE BY 10 (16 BIT)

; 111 cycles (max), 96 bytes

;;

TensRemaining:

 .byte 0,25,51,76,102,128,153,179,204,230

ModRemaing:

 .byte 0,6,2,8,4,0,6,2,8,4

.overflowFound:

 cmp #4 ;2 @74 We have overflowed,

but we can apply a shortcut.

 lda #25 ;2 @76 Divide by 10 will be

at least 25, and the

 bne .finishLowTen ;3 @79 carry is set when

higher for the next addition. ;

always branch

.startBigDivide:

 lda counterHigh ;3 @3

 sta temp ;3 @6

 lsr ;2 @8

 adc #13 ;2 @10

 adc temp ;3 @13

 ror ;2 @15

 lsr ;2 @17

 lsr ;2 @19

 adc temp ;3 @22

 ror ;2 @24

 adc temp ;3 @27

 ror ;2 @29

 lsr ;2 @31

 and #$7C ;2 @33 AND'ing here...

 sta temp ;3 @36 and saving result as

highTen (times 4)

 lsr ;2 @38

 lsr ;2 @40

 sta highTen ;3 @43

 adc temp ;3 @46 highTen (times 5)

 asl ;2 @48 highTen (times 10)

 sbc counterHigh ;3 @51

 eor #$FF ;2 @53

 tay ;2 @55 mod 10 result!

 lda TensRemaining,Y ;4 @59 Fill the low byte

with the tens it should

 sta lowTen ;3 @62 have at this point

from the high byte divide.

 lda counterLow ;3 @65

 adc ModRemaing,Y ;4 @69

 bcs .overflowFound ;2? @71/72

 sta temp ;3 @74

 lsr ;2 @76

 adc #13 ;2 @78

 adc temp ;3 @81

 ror ;2 @83

 lsr ;2 @85

 lsr ;2 @87

 adc temp ;3 @90

 ror ;2 @92

 adc temp ;3 @95

 ror ;2 @97

 lsr ;2 @99

 lsr ;2 @101

 lsr ;2 @103

 clc ;2 @105

.finishLowTen:

 adc lowTen ;3 @108

 sta lowTen ;3 @111

;Here is a second version of the divide by ten. It takes 126

cycles, but uses only 79 bytes. So you can choose whatever

routine is best. Code for it is below.

;;

; UNSIGNED DIVIDE BY 10 (16 BIT)

; 126 cycles (max), 79 bytes

;;

TensRemaining:

 .byte 0,25,51,76,102,128,153,179,204,230

ModRemaing:

 .byte 0,6,2,8,4,0,6,2,8,4

.startBigDivide:

 ldy #-2 ;2 @2 skips a branch the

first time through

 lda counterHigh ;3 @5

.do8bitDiv:

 sta temp ;3 @8

 lsr ;2 @10

 adc #13 ;2 @12

 adc temp ;3 @15

 ror ;2 @17

 lsr ;2 @19

 lsr ;2 @21

 adc temp ;3 @24

 ror ;2 @26

 adc temp ;3 @29

 ror ;2 @31

 lsr ;2 @33

 and #$7C ;2 @35 AND'ing here...

 sta temp ;3 @38 and saving result as

highTen (times 4)

 lsr ;2 @40

 lsr ;2 @42

 iny ;2 @44

 bpl .finishLowTen ;2? @46/47...120

 sta highTen ;3 @49

 adc temp ;3 @52 highTen (times 5)

 asl ;2 @54 highTen (times 10)

 sbc counterHigh ;3 @57

 eor #$FF ;2 @59

 tay ;2 @61 mod 10 result!

 lda TensRemaining,Y ;4 @65 Fill the low byte

with the tens it should

 sta lowTen ;3 @68 have at this point

from the high byte divide.

 lda counterLow ;3 @71

 adc ModRemaing,Y ;4 @75

 bcc .do8bitDiv ;2? @77/78

.overflowFound:

 cmp #4 ;2 @79 We have overflowed,

but we can apply a shortcut.

 lda #25 ;2 @81 Divide by 10 will be

at least 25, and the

 ; carry is set when

higher for the next addition..

finishLowTen:

 adc lowTen ;3 @123

 sta lowTen ;3 @126 routine ends at

either 87 or 126 cycles

;16-bit increment and decrement

;https://www.nesdev.org/wiki/Synthetic_instructions

;Incrementing/decrementing a 16-bit value involves first

adjusting the low byte, then adjusting the high byte if

necessary. Increment is simpler, since the high byte is

adjusted when the low byte wraps around to zero; for decrement,

the high byte is adjusted when the low byte wraps around to

$FF.

 ; 16-bit increment Word

 inc Word

 bne noinc inc Word+1

noinc:

 ; 16-bit decrement Word

 lda Word

 bne nodec dec Word+1

nodec: dec Word

;16-bit increment shows even more advantage when used to

control a loop, because the 16-bit increment conveniently

leaves the zero flag set at the end only if the entire 16-bit

value is zero.

;6502 8 bit PRNG

;http://retro.hansotten.nl/6502-sbc/lee-davison-web-site/some-

code-bits/#prng

; by Lee Davison

; returns pseudo random 8 bit number in A. Affects A, X and Y.

; (r_seed) is the byte from which the number is generated and

MUST be

; initialised to a non zero value or this function will always

return

; zero. Also r_seed must be in RAM, you can see why......

rand_8

 LDA r_seed ; get seed

 AND #$B8 ; mask non feedback bits

 ; for maximal length run with 8 bits we need

 ; taps at b7, b5, b4 and b3

 LDX #$05 ; bit count (shift top 5 bits)

 LDY #$00 ; clear feedback count

F_loop

 ASL A ; shift bit into carry

 BCC bit_clr ; branch if bit = 0

 INY ; increment feedback count (b0 is XOR all the

 ; shifted bits from A)

bit_clr

 DEX ; decrement count

 BNE F_loop ; loop if not all done no_clr

 TYA ; copy feedback count

 LSR A ; bit 0 into Cb

 LDA r_seed ; get seed back

 ROL A ; rotate carry into byte

 STA r_seed ; save number as next seed

 RTS ; done r_seed

 .byte 1 ; prng seed byte (must not be zero)

;6502 flag manipulation

;======================

;The Carry flag can be set cleared with SEC and CLC, but the

other flags have

;no instructions to do so.

;oVerflow flag

;-------------

;The 6502 has a CLV instruction to clear the oVerflow flag, but

has no

;complementary SEV instruction to set the V flag. However, with

careful

;arranging of code, you can do this by testing a byte of the

code.

;

;For example:

 BIT setv ; V set from b6 of RTS opcode (also clears M)

 .setv

 RTS ; opcode is %01100000

 BIT setv ; V set from b6 of JMP opcode (also clears M)

 .setv

 JMP dest ; opcode is %01001100

 BIT setv ; V set from b6 of JMP opcode (also clears M)

 .setv

 JMP (vect) ; opcode is %01101100

 BIT setv ; V set from b6 of NOP opcode (also sets M)

 .setv

 NOP ; opcode is %11001010

 .bit

 LDA &FE08 ; where absaddr>=&C000

 BIT bit+2 ; V set from b14 of &FE08 (also sets M) .bit

 LDA &FD ; where zpaddr>=&C0

 BIT bit+1 ; V set from b6 of &FD (also sets M)

;Minus flag

;----------

 .bit

 LDA &FE08 ; where absaddr>=&8000

 BIT bit+2 ; sets M from bit 15 &FE08

 .bit

 LDA &FD ; where zpaddr>=&80

 BIT bit+1 ; sets M from bit 7 of &FD

 ORA #&80 ; sets M, changing A LDr #num ; if num>&7F, sets

M changing register .clrm

 BIT clrm ; opcode is %00101100, clears M

 AND #&7F ; clears M, changing A LDr #num ; if num<&80,

clears M changing register

;Zero flag

;---------

 CMP #num ; if num known to be same as A, will set Z

 CMP #num ; if num known to be different from A, will clear

Z

 LDr #0 ; sets Z, also clearing register

;Complement Carry

;----------------

 PHP

 PLA

 EOR #&01

 PHA

 PLP

 ROL A EOR #&01

 ROR A ; also modifies M and Z

 ROR A EOR #&80

 ROL A ; also modifies M and Z

;8-bit unsigned multiplication

;https://forums.atariage.com/topic/71120-6502-killer-hacks/page/2/#comment-

896028

;Computing 8x8->16 multiply is more useful than 8x8->8, and isn't really any

harder. The 6502's lack of add-without-carry is somewhat irksome, but there are

a variety of workarounds that could be used.

; Compute mul1*mul2+acc -> acc:mul1 [mul2 is unchanged]

 ldx #8

 dec mul2

lp:

 lsr

 ror mul1

 bcc nope

 adc mul2

nope:

 dex

 bne lp

 inc mul2

;As for division, the normal approach is to do a shift-and-subtract. A 16/8->8+8

result is pretty easy, with the caveat that the results will be meaningless if the

quotient doesn't fit in eight bits. I'll try to work one up for you.

;8-bit number output in 6502 machine code

;==

;

;Print 8-bit hexadecimal

;=======================

;Print value in A in hexadecimal padded with zeros to two

characters.

;

; \ On entry A=value to print

; \ On exit A corrupted

; \ Size 22 bytes

 .PrHex

 PHA ;\ Save A

 LSR A:LSR A:LSR A:LSR A ;\ Move top nybble to bottom

nybble

 JSR PrNybble ;\ Print this nybble

 PLA ;\ Get A back and print bottom

nybble

 .PrNybble

 AND #15 ;\ Keep bottom four bits

 CMP #10:BCC PrDigit ;\ If 0-9, jump to print

 ADC #6 ;\ Convert ':' to 'A'

 .PrDigit

 ADC #ASC"0":JMP OSWRCH ;\ Convert to character and

print

;Print 8-bit hexadecimal (more cunning)

;======================================

;Print value in A in hexadecimal padded with zeros to two

characters.

;(With reference to

http://www.obelisk.me.uk/6502/algorithms.html)

;

; \ On entry A=value to print

; \ On exit A corrupted

; \ Size 21 bytes

 .PrHex

 PHA ;\ Save A

 LSR A:LSR A:LSR A:LSR A ;\ Move top nybble to bottom

nybble

 JSR PrNybble

 PLA

 AND #15 ;\ Mask out original bottom

nybble

 .PrNybble

 SED ;\ Switch to decimal arithmetic

 CLC

 ADC #&90 ;\ Produce &90-&99+CC or &00-

&05+CS

 ADC #&40 ;\ Produce &30-&39 or &41-&46

 CLD ;\ Switch back to binary

arithmetic

 JMP OSWRCH ;\ Print it

;Print 8-bit decimal 0-255

;=========================

;Print value in A in decimal padded with zeros to three

characters.

;

; \ On entry A=value to print 0-255

; \ On exit A,X corrupted

; \ Size 35 bytes

 .PrDec

 LDX #ASC"0"-1:SEC ;\ Prepare for subtraction

 .PrDec100

 INX:SBC #100:BCS PrDec100 ;\ Count how many 100s

 ADC #100:JSR PrDecDigit ;\ Print the 100s

 LDX #ASC"0"-1:SEC ;\ Prepare for subtraction

 .PrDec10

 INX:SBC #10:BCS PrDec10 ;\ Count how many 10s

 ADC #10:JSR PrDecDigit ;\ Print the 10s

 ORA #ASC"0":TAX ;\ Pass 1s into X

 .PrDecDigit

 PHA:TXA:JSR OSWRCH ;\ Print digit

 PLA:RTS ;\ Restore A and return

;Print 8-bit decimal 0-99

;========================

;Print value in A in decimal padded with zeros to two

characters.

;Works by converting into a BCD number and printing in hex.

;

; \ On entry A=value to print 0-99

; \ On exit A,X corrupted

; \ Size 11 bytes + size of PrHex

 .PrDec

 TAX:LDA #&99 ;\ Move value to X, start at -1

in BCD

 SED ;\ Switch to decimal arithmetic

 .PrDecLp

 CLC:ADC #1 ;\ Add one in BCD mode

 DEX:BPL PrDecLp ;\ Loop for all of source number

 CLD ;\ Switch back to binary

arithmetic

 :

 ;\ Fall through into PrHex

 .PrHex

;8bit * 8bit = 16bit multiply

;https://codebase64.org/doku.php?id=base:8bit_multiplication_16bit_product

;Extended from https://codebase64.org/doku.php?

id=base:8bit_multiplication_8bit_product

;------------------------

; 8bit * 8bit = 16bit multiply

; By White Flame

; Multiplies "num1" by "num2" and stores result in .A (low byte, also in .X) and .Y

(high byte)

; uses extra zp var "num1Hi"

; .X and .Y get clobbered. Change the tax/txa and tay/tya to stack or zp storage

if this is an issue.

; idea to store 16-bit accumulator in .X and .Y instead of zp from bogax

; In this version, both inputs must be unsigned

; Remove the noted line to turn this into a 16bit(either) * 8bit(unsigned) = 16bit

multiply.

 lda #$00

 tay

 sty num1Hi ; remove this line for 16*8=16bit multiply

 beq enterLoop

doAdd:

 clc

 adc num1

tax

 tya

 adc num1Hi

 tay

 txa

loop:

 asl num1

 rol num1Hi

enterLoop: ; accumulating multiply entry point (enter with .A=lo, .Y=hi)

 lsr num2

 bcs doAdd

 bne loop

; 26 bytes

;

; Ullrich von Bassewitz, 2010-11-02

;

; CC65 runtime: 8x8 => 16 unsigned multiplication

;

 .export umul8x8r16, umul8x8r16m

 .importzp ptr1, ptr3

;---

; 8x8 => 16 unsigned multiplication routine.

;

; LHS RHS result result in also

; ---

; .A (ptr3-low) ptr1-low .XA ptr1

;

umul8x8r16:

 sta ptr3

umul8x8r16m:

 lda #0 ; Clear byte 1

 ldy #8 ; Number of bits

 lsr ptr1 ; Get first bit of RHS into carry

@L0: bcc @L1

 clc

 adc ptr3

@L1: ror

 ror ptr1

 dey

 bne @L0

 tax

 stx ptr1+1 ; Result in .XA and ptr1

 lda ptr1 ; Load the result

 rts ; Done

;\ Calculating the day of the week for a given date

;\ ==

;\ Based on code at http://6502.org/source/misc/dow.htm by Paul

Guertin.

;\

;\ This routine works for any date from 1900-03-01 to 2155-12-

31.

;\ No range checking is done, so validate input before calling.

;\

;\ It uses the formula

;\ Weekday = (day + offset[month] + year + year/4 + fudge)

mod 7

;\ offset[month] adjusts the day count so 1st of a month

is effectively

;\ the (lastday+1)-th of the previous month.

;\ fudge is -1 when after 2099 as 2100 is not a leap

year.

;\

;\ On entry A=day, 1..31

;\ X=month, 1..12

;\ Y=year-1900, 0..255

;\ On exit A=day of week 0..6 for Sun..Sat, Carry will be Set

;\ Needs incrementing with ADC #0 after calling to

;\ become standard 1..7 range

;\ Size 45 bytes + 1 byte workspace

;\

.DayOfWeek

CPX #3:BCS dow_march ;\ Year starts in March to bypass leap

year problem

DEY ;\ If Jan or Feb, decrement year

.dow_march

EOR #&7F ;\ Invert A so carry works right

CPY #200 ;\ Carry will be 1 if 22nd century

ADC dow_months-1,X ;\ A=day+month_offset

STA dow_tmp

TYA:JSR dow_mod7 ;\ Get the year MOD 7 to prevent

overflow

SBC dow_tmp:STA dow_tmp ;\ A=day+month_offset+year

TYA:LSR A:LSR A ;\ Get the year DIV 4

CLC:ADC dow_tmp ;\ A=day+month_offset+year+year/4, fall

through to MOD 7

.dow_mod7

ADC #7:BCC dow_mod7 ;\ Reduce A to A MOD 7

RTS

.dow_months

EQUB 1:EQUB 5:EQUB 6:EQUB 3 ;\ Month offsets

EQUB 1:EQUB 5:EQUB 3:EQUB 0

EQUB 4:EQUB 2:EQUB 6:EQUB 4

.dow_tmp

EQUB 0 ;\ Temporary storage

;\

;\

;\ You can test this with:

;\

;\ FOR Y%=1 TO 255

;\ FOR X%=1 TO 12

;\ FOR A%=1 TO 31

;\ PRINT A%;"/";X%;"/";1900+Y%;" ";

;\ PRINT MID$("SunMonTueWedThuFriSat",((USRDayOfWeek) AND

&FF)*3+1,3)

;\ NEXT A%:NEXT X%:NEXT Y%

;\

;\ I must say that this is an impressive bit of code!

;\

;Counting, incrementing, decrementing

;====================================

;This will count from any value and end at zero: CMP #1

;\ Carry set if A>0

 ADC #0 ;\ If A>0, A=A+1; if A=0, A=A+0

;This code will count down from any value and ends at &FF: CMP

#&FF ;\ Carry set if A=&FF

 SBC #0 ;\ If A<&FF, A=A-1; if A=&FF, A=A-0

;Comparing various values

;========================

 ORA #0 ;\ Sets EQ if A=0, the usual test for zero

CMP #1 ;\ Sets CC if A=0, sets CS if A<>0

;Decrementing 16-bit and larger numbers

;======================================

;Incrementing a 16-bit or larger number in memory is trivial,

as the Zero

;flag is set when a byte wraps from &FF to &00:

 INC addr+0

 BNE done

 INC addr+1

 BNE done

 INC addr+2

 BNE done

 INC addr+3

 .done

;However, decrementing is not as simple, as you need to check

for the wrap

;from &00 to &FF. The following does not work:

 DEC num+0

 BNE done

 DEC num+1

 BNE done

 DEC num+2

 BNE done

 DEC num+3

 .done

;Each byte being decremented must be checked /before/ it is

decremented. This

;requires a register to be corrupted.

 LDA num+0:BNE skip ;\ Skip if low byte not about to wrap

from &00 to &FF

 DEC num+1 ;\ Decrement high byte

 .skip

 DEC num+0 ;\ Decrement low byte

; \ The following code tests for zero

 ORA num+1

 BNE loop

;This can be expanded for 24-bit, 32-bit, and larger counters:

 LDA num+0:BNE dec0 ;\ Skip past if b0-b7 not about to

wrap

 LDA num+1:BNE dec1 ;\ Skip past if b8-b15 not about to

wrap

 LDA num+2:BNE dec2 ;\ Skip past if b16-b24 not about to

wrap

 DEC num+3 ;\ Decrement b24-b31

 .dec2

 DEC num+2 ;\ Decrement b16-23

 .dec1

 DEC num+1 ;\ Decrement b8-b15

 .dec0

 DEC num+0 ;\ Decrement b0-b7

; \ Test if num=0

 ORA num+1

 ORA num+2

 ORA num+3

 BNE loop

;The temporary register can be A, X or Y, whichever is most

convenient.

;You can use the same method to do a 16-bit decrement of a

value in the XY registers:

 TXA:BNE skip ;\ Skip if low byte not about to wrap

from &00 to &FF

 DEY ;\ Decrement high byte

 .skip

 DEX ;\ Decrement low byte

; \ The following code tests for zero

 BNE loop

 TYA

 BNE loop

;This is the complement to a 16-increment in XY:

 INX:BNE done

 INY

 .done

;or

 INX

	 BNE loop

 INY

 BNE loop

;With reference to

http://www.obelisk.me.uk/6502/algorithms.html.

;http://6502.org/source/general/SWN.html

;David Galloway made this suggestion on the facebook 6502

Programming group, for swapping nybbles. $36 becomes $63, $A1

becomes $1A, etc.. It takes only 8 bytes and 12 clock cycles,

and no variables, no stack usage, no look-up table, no X or Y

usage. It uses only the accumulator and status register.

 ASL A ADC #$80

 ROL A

 ASL A ADC #$80

 ROL A

;Straight-lining it takes only five bytes more than a

subroutine call and cuts the execution time in half. It could

of course be put in a macro. How that is done exactly will

depend on your assembler, but might go something like: SWN:

MACRO

 ASL A ADC #$80

 ROL A

 ASL A ADC #$80

 ROL A

ENDM

 ;-------------

;and would be called simply with SWN as if it were an assembly-

language mnemonic. You probably won't use it many times in a

program anyway for the straight-lining to take up appreciable

memory, but you might want it pretty fast when you do.

;Efficient sign extension

;http://forum.6502.org/viewtopic.php?f=2&t=6069

;I was wandering the 'net and somehow kept noticing that more

than a few 65xx programmers were taking more effort than

necessary to sign-extend integers. I've been playing with 65xx

assembly for at least 39 years, and I really can't remember if

I got this little ditty from somewhere else long ago and simply

forgot from where, or if it's an original idea of mine. Either

way, here it is, all ten bytes and 13 cycles worth:

; Sign-extend A to 16-bits in ZP

 sta ZP

 lda #$7f

 cmp ZP ; cc for <0, cs for >=0

 sbc #$7f

 sta ZP+1 ; $ff for <0, $00 for >=0

Code:

; Promote int16 in ZP to int32

 lda #$7f

 cmp ZP+1 ; cc for <0, cs for >=0

 sbc #$7f

 sta ZP+2 ; $ff for <0, $00 for >=0

 sta ZP+3

;--

;With CMOS instructions, I can cut the 8->16 case down to 9

bytes with the same average cycle count (either 11 or 15

cycles, depending on sign):

 STA zp

 STZ zp+1

 ASL A ; carry set for negative

 BCC :+

 DEC zp+1

: ; continue

;You could avoid the ASL A if the flags already reflect the

contents of A, and branch on BPL instead of BCC. This saves 1

more byte and 2 cycles. This even has the virtue of preserving

the value in A.

;For the 16->32 case:

 LDA #0

 BIT zp+1 ; N flag reflects value in memory

 BPL :+

 DEC A

: STA zp+2

 STA zp+3

;This is 11 bytes, best-case 14 cycles, worst-case 15 cycles.

Not quite so good - but if we delete the final STA (thus

extending the sign by only one byte), we are back to 9 bytes

and 11-12 cycles.

;--

;The Sign-extend section the Nesdev Wiki's synthetic

instructions page offers a similar technique for a constant-

time replacement of A with its sign extension, but this one

uses no branches. If one bookends it with a STA zp and a STA

zp+1, it's almost (but not quite, by 1 byte and 1 cycle) as

good as yours. It might be useful if you don't want to store A

in the zero page, though, since it doesn't rely on re-using the

original value of A as you need to do with your CMP.

 ; Constant-time version, but destroys the carry

 ASL A ; sign bit into carry; use CPX etc.

if using X reg

 LDA #$00

 ADC #$FF ; C set: A = $FF + C = $00

 ; C clear: A = $FF + C = $FF

 EOR #$FF ; Flip all bits and they all now

match C

;http://6502.org/source/integers/fastx10.htm

;Fast Multiply by 10

;By Leo Nechaev (leo@ogpi.orsk.ru), 28 October 2000.

MULT10 ASL ;multiply by 2

 STA TEMP ;temp store in TEMP

 ASL ;again multiply by 2 (*4)

 ASL ;again multiply by 2 (*8)

 CLC

 ADC TEMP ;as result, A = x*8 + x*2

 RTS

TEMP .byte 0

;Last page update: November 6, 2001.

;General 8bit * 8bit = 8bit multiply

;https://codebase64.org/doku.php?id=base:8bit_multiplication_8bit_product ;

General 8bit * 8bit = 8bit multiply

; by White Flame 20030207

; Multiplies "num1" by "num2" and returns result in .A

; Instead of using a bit counter, this routine early-exits when num2 reaches zero,

thus saving iterations.

; Input variables:

; num1 (multiplicand)

; num2 (multiplier), should be small for speed

; Signedness should not matter ; .X and .Y are preserved

; num1 and num2 get clobbered lda #$00

 beq enterLoop

doAdd:

 clc

 adc num1

loop:

 asl num1

enterLoop: ;For an accumulating multiply (.A = .A + num1*num2), set up num1

and num2, then enter here

 lsr num2

 bcs doAdd bne loop

end:

; 15 bytes

;INC and DEC techniques

;http://6502org.wikidot.com/software-incdec

;Typical 16-bit increment

;Overflow (incrementing to $0000) sets the Z flag is set (i.e.

BEQ branches).

;

 INC NUML

 BNE LABEL

 INC NUMH

LABEL

;Typical 16-bit decrement

;

 LDA NUML

 BNE LABEL

 DEC NUMH

LABEL DEC NUML

;16-bit decrement, test for zero

;

 LDA NUML

 BNE LABEL

 LDA NUMH

 BEQ ZERO ; branch when NUM = $0000 (NUM is not

decremented in that case)

 DEC NUMH

LABEL DEC NUML

;Add 255

;

 LDA NUML

 BEQ LABEL

 INC NUMH

LABEL DEC NUML

;Subtract 255

;

 INC NUML

 BEQ LABEL

 DEC NUMH

LABEL

;Constant time increment 6 cycles

;A = high byte, X = low byte

;Overflow (incrementing to $0000) sets the carry

CPX #$FF

INX

ADC #$00

;Constant time decrement 6 cycles

;A = high byte, X = low byte

;Underflow (decrementing to $FFFF) clears the carry

CPX #$01

DEX

SBC #$00

;Increment and stop at $00

;This counts up to $FF then to $00, then stays at $00.

CMP #1

ADC #0

;One advantage of a CMP before the ADC (and SBC below) is that

the accumulator always contains the correct value. If it were

an increment, compare, branch, and decrement (to return to the

stop value), then it would briefly, but temporarily, not be at

the stop value.

;Decrement and stop at $FF

;This counts down to $00 then to $FF, then stays at $FF.

CMP #$FF

SBC #0

;Double-decrement

;To subtract two from a 16-bit value, you can execute an above

routine twice, but it is probably more efficient to code it as

its own case: DEC2 LDA NUML

 SEC

 SBC #2

 STA NUML

 BCS LABEL

 DEC NUMH

LABEL

;If for any reason you may need to preserve the accumulator or

V flag, or if you need a binary decrement while D is set, you

can wrap the above routine with PHP PHA CLD … and … PLA PLP, or

you can sacrifice the X or Y register like so: DEC2 LDY NUML

 CPY #2

 DEY

 DEY

 STY NUML

 BCS LABEL

 DEC NUMH

LABEL

;If you know you're not in decimal mode, you can keep the high

byte in A and the low byte in X or Y, resulting in a tidy: DEC2

CPY #2

 DEY

 DEY

 SBC #0

;Integer Square Roots in 6502 machine code

;===

;A simple, but inefficient way of calculating integer square

roots is to

;count how many times increasing odd numbers can be subtracted

from the

;starting value. For example:

;

;32-1=31 -> 31-3=28 -> 28-5=23 -> 23-7=16 -> 16-9=7 -> 7-11<0

; 1 2 3 4 5

;

;-> SQR(30)=5, remainder 7

;

;This can be done in 6502 machine code as follows:

;

;\ Calculate 16-bit square root

;\ ----------------------------

;\ On entry num+0..num+1 = input value

;\ sub+0..sub+1 = workspace

;\ On exit X = SQR(input value)

;\ Y = remainder from SQR(input value)

;\ A,num,sub = corrupted

;\ Size 37 bytes

;\

.sqr ;\ On entry, !num=input value

LDX #1:STX sub+0:DEX:STX sub+1 ;\ Initialise sub to first

subtrand

 ;\ and initialise X to SQR(0)

.sqr_loop ;\ Repeatedly subtract

increasing

SEC ;\ odd numbers until num<0

LDA num+0:TAY:SBC sub+0:STA num+0 ;\ num=num-subtrand,

remainder in Y

LDA num+1:SBC sub+1:STA num+1

BCC sqr_done ;\ num<0, all done

INX ;\

LDA sub+0:ADC #1:STA sub+0 ;\ step +2 to next odd number

BCC sqr_loop ;\ no overflow, subtract

again

INC sub+1:BNE sqr_loop ;\ INC high byte and subtract

again

.sqr_done

RTS ;\ X=root, Y=remainder

:

;You can test it with:

; FOR A%=1 to 65535:!num=A%:!sub=USR sqr:PRINT A%,sub?1,sub?

2:NEXT

;

;or with:

; FOR A%=1 to 65535

; !num=A%:B%=USR sqr

; PRINT A%,(B%AND&FF00)DIV256,(B%AND&FF0000)DIV65536

; NEXT

;

;It is simple to reduce the code to calculate roots of 8-bit

numbers by

;removing the code to subtract in+1. The code uses an 8-bit

counter for the

;root, so to calculate roots of numbers larger than 16 bits

different code is

;needed, as the square root of &10000 (a 17-bit number) is &100

(a 9-bit

;number).

;Jump indirect using stack ;An indirect address can be pushed

on the stack and then jumped to by

;returning. Since the address is on the stack, no temporary

locations have to

;be assigned for the destination address and the code is re-

entrant. Normal

;return increments the address, but rti doesn't: lda	 #$12	

; push high byte first

	 pha

	 lda	 #$34

	 pha

	 php

	 rti	 	 ; jumps to $1234

; Linear congruential pseudo-random number generator

;http://6502.org/source/integers/random/random.html

;

; Calculate SEED = 1664525 * SEED + 1

;

; Enter with:

;

; SEED0 = byte 0 of seed

; SEED1 = byte 1 of seed

; SEED2 = byte 2 of seed

; SEED3 = byte 3 of seed

;

; Returns:

;

; SEED0 = byte 0 of seed

; SEED1 = byte 1 of seed

; SEED2 = byte 2 of seed

; SEED3 = byte 3 of seed

;

; TMP is overwritten

;

; For maximum speed, locate each table on a page boundary

;

; Assuming that (a) SEED0 to SEED3 and TMP are located on page

zero, and (b)

; all four tables start on a page boundary:

;

; Space: 58 bytes for the routine

; 1024 bytes for the tables

; Speed: JSR RAND takes 94 cycles

;

RAND CLC ; compute lower 32 bits of:

 LDX SEED0 ; 1664525 * ($100 * SEED1 + SEED0) + 1

 LDY SEED1

 LDA T0,X

 ADC #1

 STA SEED0

 LDA T1,X

 ADC T0,Y

 STA SEED1

 LDA T2,X

 ADC T1,Y

 STA TMP

 LDA T3,X

 ADC T2,Y

 TAY ; keep byte 3 in Y for now (for speed)

 CLC ; add lower 32 bits of:

 LDX SEED2 ; 1664525 * ($10000 * SEED2)

 LDA TMP

 ADC T0,X

 STA SEED2

 TYA

 ADC T1,X

 CLC

 LDX SEED3 ; add lower 32 bits of:

 ADC T0,X ; 1664525 * ($1000000 * SEED3)

 STA SEED3

 RTS

;

; Generate T0, T1, T2 and T3 tables

;

; A different multiplier can be used by simply replacing the

four bytes

; that are commented below

;

; To speed this routine up (which will make the routine one

byte longer):

; 1. Delete the first INX instruction

; 2. Replace LDA Tn-1,X with LDA Tn,X (n = 0 to 3)

; 3. Replace STA Tn,X with STA Tn+1,X (n = 0 to 3)

; 4. Insert CPX #$FF between the INX and BNE GT1

;

GENTBLS LDX #0 ; 1664525 * 0 = 0

 STX T0

 STX T1

 STX T2

 STX T3

 INX

 CLC

GT1 LDA T0-1,X ; add 1664525 to previous entry to get

next entry

 ADC #$0D ; byte 0 of multiplier

 STA T0,X

 LDA T1-1,X

 ADC #$66 ; byte 1 of multiplier

 STA T1,X

 LDA T2-1,X

 ADC #$19 ; byte 2 of multiplier

 STA T2,X

 LDA T3-1,X

 ADC #$00 ; byte 3 of multiplier

 STA T3,X

 INX ; note: carry will be clear here

 BNE GT1

RTS

;The short version is just an ordinary 32-bit * 32-bit

multiplication routine. The DB pseudo-op is called .BYTE on

some assemblers. Consult the assembler documentation for the

pseudo-op name it expects.

; Linear congruential pseudo-random number generator

;

; Calculate SEED = 1664525 * SEED + 1

;

; Enter with:

;

; SEED0 = byte 0 of seed

; SEED1 = byte 1 of seed

; SEED2 = byte 2 of seed

; SEED3 = byte 3 of seed

;

; Returns:

;

; SEED0 = byte 0 of seed

; SEED1 = byte 1 of seed

; SEED2 = byte 2 of seed

; SEED3 = byte 3 of seed

;

; TMP, TMP+1, TMP+2 and TMP+3 are overwritten

;

; Note that TMP to TMP+3 and RAND6 are high byte first, low

byte last

;

; Assuming that (a) SEED0 to SEED3 and TMP+0 to TMP+3 are all

located on page

; zero, and (b) none of the branches cross a page boundary:

;

; Space: 53 bytes

; Speed: JSR RAND takes 2744 cycles, on average (1624 to 3864

cycles)

; specifically, JSR RAND takes 1624 + 70 * N cycles,

where

; N = number of bits of SEED that are 1

;

RAND LDA #1 ; store 1 in TMP

 LDX #3

RAND1 STA TMP,X

 LSR

 DEX

 BPL RAND1

 LDY #$20 ; calculate SEED = SEED * RAND4 +

TMP

 BNE RAND5 ; branch always

RAND2 BCC RAND4 ; branch if a zero was shifted out

 CLC ; add multiplier to product

 LDX #3

RAND3 LDA TMP,X

 ADC RAND4,X

 STA TMP,X

 DEX

 BPL RAND3

RAND4 ROR TMP ; shift result right

 ROR TMP+1

 ROR TMP+2

 ROR TMP+3

RAND5 ROR SEED3 ; shift out old seed, and shift in

new seed

 ROR SEED2

 ROR SEED1

 ROR SEED0

 DEY

 BPL RAND2

 RTS

RAND6 DB $00,$19,$66,$0D ; multiplier (high byte first!)

;Here is the 16-bit version of RANDOM, called RANDOM16.

; Linear congruential pseudo-random number generator

;

; Get the next SEED and obtain an 16-bit random number from it

;

; Requires the RAND subroutine

;

; Enter with:

;

; MOD = modulus

;

; Exit with:

;

; RND = random number, 0 <= RND < MOD

;

; TMP is overwritten, but only after RND is called.

;

RANDOM16 JSR RAND ; get next seed

 LDA #0 ; multiply SEED by MOD

 STA RND+1

 STA RND

 STA TMP

 LDY #16

R16A LSR MOD+1 ; shift out modulus

 ROR MOD

 BCC R16B ; branch if a zero was shifted out

 CLC ; add SEED, keep upper 16 bits of product in

RND

 ADC SEED0

 TAX

 LDA TMP

 ADC SEED1

 STA TMP

 LDA RND

 ADC SEED2

 STA RND

 LDA RND+1

 ADC SEED3

 STA RND+1

 TXA

R16B ROR RND+1 ; shift product right

 ROR RND

 ROR TMP

 ROR

 DEY

 BNE R16A

 RTS

;minimum code pseudo sine wave

;http://forum.6502.org/viewtopic.php?f=2&t=2404

;This is meant to be the standard parabolic pseudo sine wave

generator. In the absolute minimum of code.

 clc

 ldy #$10

 lda #$7F

LOOP1

 dey

LOOP2

 sty temp adc temp bmi LOOP1

 iny

 jmp LOOP2

;I guess if you were going to time it with code you'd have to

add a nop to the dey side.

 clc

 ldy #$10

 lda #$7F

LOOP1

 nop

 dey

LOOP2

 sty temp adc temp bmi LOOP1

 iny

 jmp LOOP2

;Permutation Generator by Paul Guertin

;http://6502.org/source/integers/perm.htm

;How to generate permutations in 6502 assembly.

;By Paul Guertin (pg@sff.net), 19 August 2000.

;If you have n distinct elements, there are n! ways of

arranging them in order. For example, the 3!=6 permutations of

the digits "123" are 123, 213, 312, 132, 231, and 321.

;Generating permutations is usually done with a recursive

procedure, but here is a cute iterative routine that does it

simply and efficiently. One caveat: permutations are not

generated in lexicographical order, but in an order such that

two successive permutations differ by exactly one swap (as in

the list above).

;To keep this routine as generic as possible, it calls two

user-supplied subroutines: EXCHANGE, which swaps elements X and

Y, and PROCESS, which does something with the permutation (such

as print it). This way, you can easily permute any data set.

SIZE EQU 4 ; Number of elements to permute

TEMP EQU $6 ; (1 byte) Temporary storage

PERMGEN:

 LDA #0 ; Clear the stack

 LDX #SIZE-1

CLRSTK STA STK,X

 DEX

 BPL CLRSTK

 BMI START ; Do first permutation

LOOP LDA STK,X

 STX TEMP

 CMP TEMP ; Swap two elements if stk,x < x

 BCS NOEXCH ; else just increment x

 INC STK,X

 TAY

 TXA

 LSR ; Check whether x is even or odd

 BCS XODD ; x odd -> swap x and stk,x

 LDY #0 ; x even -> swap x and 0

XODD JSR EXCHANGE ; Swap elements x and y (user-

supplied)

START JSR PROCESS ; Use the permutation (user-supplied)

 LDX #1 ;

 BNE LOOP ; (always)

NOEXCH LDA #0 ; No exchange this pass,

 STA STK,X ; so we go up the stack

 INX

 CPX #SIZE

 BCC LOOP ; Loop until all permutations

generated

 RTS

STK DS SIZE ; Stack space (ds reserves "size"

bytes)

;Example of use:

;print all permutations of integers {1, 2, ..., SIZE}

EXAMPLE LDX #SIZE-1 ; Set up ASCII digit string

 CLC

EINIT TXA

 ADC #"1"

 STA DIGIT,X

 DEX

 BPL EINIT

 JMP PERMGEN ; Jump to permutation generator

DIGIT DS SIZE

;Here are the two sub-routines:

EXCHANGE LDA DIGIT,X ; Swap two digits in the string

 PHA

 LDA DIGIT,Y

 STA DIGIT,X

 PLA

 STA DIGIT,Y

 RTS

PROCESS LDX #0 ; Print the digit string (Apple II

specific)

PLOOP LDA DIGIT,X

 JSR $FDED ; Print accumulator as ASCII character

 INX

 CPX #SIZE

 BCC PLOOP

 JMP $FD8E ; Print a carriage return

;Last page update: August 19, 1999.

;Practical Memory Move Routines by Bruce Clark

;http://6502.org/source/general/memory_move.html

;

;Here are some reasonably fast general-purpose routines for

moving blocks of memory. You simply specify the address to move

from, the address to move to, and the size of the block. When

SIZE is zero, no bytes are moved. SIZEL and SIZEH do not need

to be consecutive memory locations, or even on the zero page

for that matter. These routines only take one additional cycle

if SIZEL is not on the zero page. Likewise, they only take one

additional cycle if SIZEH is not on the zero page. Note that

this adds only to the total number of cycles, not to the number

of cycles per byte, since neither SIZEL nor SIZEH is inside a

loop anywhere.

;

;These routines are intended to be both flexible and practical,

without being excessively lengthy or excessively slow. To that

end, they can be placed in ROM or in RAM.

;

;There are three routines moving memory upward (i.e. to a

higher address), each of which is tailored to a slightly

different set of input parameters.

;

; Move memory down

;

; FROM = source start address

; TO = destination start address

; SIZE = number of bytes to move

;

MOVEDOWN LDY #0

 LDX SIZEH

 BEQ MD2

MD1 LDA (FROM),Y ; move a page at a time

 STA (TO),Y

 INY

 BNE MD1

 INC FROM+1

 INC TO+1

 DEX

 BNE MD1

MD2 LDX SIZEL

 BEQ MD4

MD3 LDA (FROM),Y ; move the remaining bytes

 STA (TO),Y

 INY

 DEX

 BNE MD3

MD4 RTS

; Move memory up

;

; FROM = source start address

; TO = destination start address

; SIZE = number of bytes to move

;

MOVEUP LDX SIZEH ; the last byte must be moved first

 CLC ; start at the final pages of FROM and TO

 TXA

 ADC FROM+1

 STA FROM+1

 CLC

 TXA

 ADC TO+1

 STA TO+1

 INX ; allows the use of BNE after the DEX

below

 LDY SIZEL

 BEQ MU3

 DEY ; move bytes on the last page first

 BEQ MU2

MU1 LDA (FROM),Y

 STA (TO),Y

 DEY

 BNE MU1

MU2 LDA (FROM),Y ; handle Y = 0 separately

 STA (TO),Y

MU3 DEY

 DEC FROM+1 ; move the next page (if any)

 DEC TO+1

 DEX

 BNE MU1

RTS

; Move memory up

;

; FROM = 1 + source end address

; TO = 1 + destination end address

; SIZE = number of bytes to move

;

MOVEUP LDY #$FF

 LDX SIZEH

 BEQ MU3

MU1 DEC FROM+1

 DEC TO+1

MU2 LDA (FROM),Y ; move a page at a time

 STA (TO),Y

 DEY

 BNE MU2

 LDA (FROM),Y ; handle Y = 0 separately

 STA (TO),Y

 DEY

 DEX

 BNE MU1

MU3 LDX SIZEL

 BEQ MU5

 DEC FROM+1

 DEC TO+1

MU4 LDA (FROM),Y ; move the remaining bytes

 STA (TO),Y

 DEY

 DEX

 BNE MU4

MU5 RTS

; Move memory up

;

; FROM = source end address

; TO = destination end address

; SIZE = number of bytes to move

;

MOVEUP LDY #0

 LDX SIZEH

 BEQ MU3

MU1 LDA (FROM),Y ; handle Y = 0 separately

 STA (TO),Y

 DEY

 DEC FROM+1

 DEC TO+1

MU2 LDA (FROM),Y ; move a page at a time

 STA (TO),Y

 DEY

 BNE MU2

 DEX

 BNE MU1

MU3 LDX SIZEL

 BEQ MU5

 LDA (FROM),Y ; handle Y = 0 separately

 STA (TO),Y

 DEY

 DEX

 BEQ MU5

 DEC FROM+1

 DEC TO+1

MU4 LDA (FROM),Y ; move the remaining bytes

 STA (TO),Y

 DEY

 DEX

 BNE MU4

MU5 RTS

;Even more speed can be gained by using self-modifying code,

i.e. replacing the (ZeroPage),Y addressing mode with the

Absolute,Y addressing mode. This will take 2 fewer cycles per

byte. There will be some additional cycles from the added

instructions that self-modify the code, but the self-

modification occurs only once, and therefore adds these cycles

to total number of cycles, rather than the number of cycles per

byte moved. As always, the instructions that are self-modified

can't be located in ROM.

;Last page update: April 3, 2004.

; Reverse the byte stored at $02

; Answer returned in accumulator

revbyte ldx #$07

loop1 asl $02

 ror

 dex

 bpl loop1

 rts

;Shifting and Rotating bits

;==========================

;The 6502's rotate instructions rotate nine bits through the

carry flag. You

;can rotate eight bits with the following instructions: ; \

RLC A - 8-bit rotate left circular, leaves Carry=old bit 7

 ;\ Cy A=abcdefgh

 CMP #&80 ;\ a abcdefgh

 ROL A ;\ a bcdefgha ; \ RLC A - 8-bit rotate

left circular, leaves Carry clear

 ;\ Cy A=abcdefgh

 ASL A ;\ a abcdefg0

 ADC #0 ;\ 0 bcdefgha ; \ RRC A - 8-bit rotate

right circular, leaves Carry=old bit 0

 ;\ Cy A=abcdefgh

 PHA ;\ ? abcdefgh

 ROR A ;\ h ?abcdefg

 PLA ;\ h abcdefgh

 ROR A ;\ h habcdefg ;The 6502's shift instructions

are logical shifts with a zero bit entering

;the data to replace bits moved out. You can do an arthimetic

shift with the

;following instructions:

; \ ASR A - Arithmetic shift right - new bit 7 is the same

as old bit 7

 ;\ Cy A=abcdefgh

 CMP #&80 ;\ a abcdefgh

 ROR A ;\ h aabcdefg ;The following rotates two bits

through an 8-bit left circular rotate: ; \ Rotate two bits

left through A

 ;\ Cy A=abcdefgh

 ASL A ;\ a bcdefgh0

 ADC #&80 ;\ b Bcdefgha

 ROL A ;\ B cdefghab ;This gives an efficient way to

swap the two nybbles in the A register: ; \ SWP A - swap

nybbles

 ;\ Cy A=abcdefgh

 ASL A ;\ a bcdefgh0

 ADC #&80 ;\ b Bcdefgha

 ROL A ;\ B cdefghab

 ASL A ;\ c defghab0

 ADC #&80 ;\ d Defghabc

 ROL A ;\ D efghabcd

;Setting, Clearing and Copying bits of data

;==

;AND xx will clear the bits in A that are also clear in xx, for

example:

; A xx after AND xx

; %abcdefgh %01010101 %0b0d0f0h ;ORA xx will set the

bits in A that are also set in xx, for example:

; A xx after ORA xx

; %abcdefgh %01010101 %a1c1e1g1

;EOR xx will toggle the bits in A that are set in xx, for

example:

; A xx after EOR xx

; %abcdefgh %01010101 %aBcDeFgH

;To clear the bits in A that are ''set'' in xx, use both ORA

and EOR, for example:

; A xx after ORA xx after EOR xx

; %abcdefgh %01010101 %a1c1e1g1 %a0c0e0g0

;You can copy a number of bits to a memory location without

changing the

;other bits using EOR and AND. For example, to copy the top

four bits of A

;into a memory location without changing the bottom four bits,

use the

;following:

; A=12345678 dst=abcdefgh

 EOR dst; ******** abcdefgh

 AND #&F0; ****0000 abcdefgh

 EOR dst; 1234efgh abcdefgh

 STA dst; 1234efgh 1234efgh ;This is much more

efficient than the usual code: PHA

 LDA dst

 AND #&0F

 STA dst

 PLA

 AND #&F0

 ORA dst

 STA dst

;Swapping data

;=============

;You can swap the contents of two memory locations by EORing

them with each other: ; \ SWP addr1,addr2 - swap contents of

addr1 and addr2

 LDA addr1

 EOR addr2

 STA addr1

 EOR addr2

 STA addr2

 EOR addr1

 STA addr1

;This is in contrast to the usual way of using a temporary

variable: ; \ Swapping two bytes of data with a temporary

memory location

 LDA addr1

 STA tmp

 LDA addr2

 STA addr1

 LDA tmp

 STA addr2

; \ Swapping two bytes of data with a temporary register

 LDX addr1

 LDA addr2

 STA addr1

 STX addr2

;https://www.nesdev.org/wiki/Synthetic_instructions ;Arithmetic

shift right

;The ARM instruction set has an arithmetic right shift, which

doesn't alter the sign (top) bit. This shift is used to divide

a signed value by two. But the 6502 lacks this instruction; LSR

doesn't work because it shifts the sign bit to the right, then

clears it.

;To implement this, we need carry set to the sign bit, then we

can use ROR. CMP #$80 performs this task; if the value is less

than $80, carry is cleared, otherwise it's set: ; Arithmetic

shift right A

cmp #$80

ror a

;If the operand is in memory, we just use ASL to move the sign

bit into carry: ; Arithmetic shift right Value

lda Value

asl a

ror Value

;8-bit rotate

;The 65xx series rotate instructions are all 9-bit, not 8-bit

as often imagined. If they really were 8-bit, then eight ROR or

ROL instructions in a row would leave A with its original

value. In actuality, nine are required to do so, since the

carry acts as a ninth bit of A.

;Similar to arithmetic right shift, we must set carry to the

top or bottom bit in advance of the rotate. For 8-bit rotate

left, it's simple: ; 8-bit rotate left A

cmp #$80

rol a

; alternate method

asl a

adc #0

;For 8-bit rotate right, we must save and restore A: ; 8-bit

rotate right A

pha

lsr a

pla

ror a

;A could be saved and restored using other methods, like TAX

and TXA, etc.

;Branching can also be used:

 ; 8-bit rotate right A

 lsr a

 bcc skip

 adc #$80-1 ; carry is set, so will add extra 1

skip:

;If the operand is in memory:

; 8-bit rotate left Value

lda Value

asl a

rol Value

; 8-bit rotate right Value

lda Value

lsr a

ror Value

;Sign-extend

;https://www.nesdev.org/wiki/Synthetic_instructions ;When

increasing the number of bits in a signed value, the new high

bits are filled with copies of the sign bit. This is called

sign extension. For example, sign-extending the 8-bit value $80

(-128) to 16 bits sets the new bits, resulting in $FF80; sign-

extending $7F (+127) to 16 bits results in $007F. The following

sequences calculate the upper byte of the sign-extended value.

 ; calculates upper byte of sign-extension of A

 ora #$7F

 bmi neg

 lda #0

neg:

 ; calculates upper byte of sign-extension of A,

alternate version

 and #$80

 bpl pos

 lda #$ff

pos:

;This constant-time version (7 bytes, 8 cycles) destroys the

carry, so don't try using it in the middle of a multi-byte

addition: asl a ; cpx #$80 or cpy #$80 is also possible

 lda #$00

 adc #$FF ; C is unchanged and A = $00 if C was set or $FF if

C was clear

 eor #$FF ; now all bits of A are set to what bit 7 was ;If

you're just trying to add an 8-bit delta to a 16-bit value, you

could try subtracting 256 from the value by decrementing the

high byte if the value is negative and then adding as if it

were unsigned.

 lda delta_value bpl notneg

 dec value_hi notneg:

 clc

 adc value_lo

 sta value_lo lda #0

 adc value_hi

 sta value_hi

;Software - Math - Integer Division

;http://6502org.wikidot.com/software-math-intdiv

;8-bit / 8-bit = 8-bit quotient, 8-bit remainder (unsigned)

;Inputs:

;TQ = 8-bit numerator

;B = 8-bit denominator

;Outputs:

;TQ = 8-bit quotient of TQ / B

;accumulator = remainder of TQ / B

;

 LDA #0

 LDX #8

 ASL TQ

L1 ROL

 CMP B

 BCC L2

 SBC B

L2 ROL TQ

 DEX

 BNE L1

;16-bit / 8-bit = 8-bit quotient, 8-bit remainder (unsigned)

;Inputs:

;TH = bits 15 to 8 of the numerator

;TLQ = bits 7 to 0 of the numerator

;B = 8-bit denominator

;Outputs:

;TLQ = 8-bit quotient of T / B

;accumulator = remainder of T / B

;

 LDA TH

 LDX #8

 ASL TLQ

L1 ROL

 BCS L2

 CMP B

 BCC L3

L2 SBC B

;

; The SEC is needed when the BCS L2 branch above was taken

;

 SEC

L3 ROL TLQ

 DEX

 BNE L1

;Square Calculator

;http://retro.hansotten.nl/6502-sbc/lee-davison-web-site/some-

code-bits/#prng

;This routine calculates the 16-bit unsigned integer square of

a signed 16-bit integer in the range +/-255 (decimal).

; by Lee Davison; Calculates the 16 bit unsigned integer square

of the signed

; 16 bit integer in Numberl/Numberh.

; The result is always in the range 0 to 65025 and is held in

Squarel/Squareh

;

; The maximum input range is only +/-255 and no checking is

done to ensure that

; this is so.

;

; This routine is useful if you are trying to draw circles as

for any circle

;

; x^2+y^2=r^2 where x and y are the co-ordinates of any point

on the circle and

; r is the circle radius

;

; Destroys all registers .ORG 8000 ; these must be in

RAM

Numberl ; number to square low byte

Numberh = Numberl+ ; number to square high byte

 .word $FFFF

Squarel ; square low byte

Squareh = Squarel+1 ; square high byte

 .word $FFFF

Tempsq ; temp byte for intermediate result

 .byte $00

 .ORG 8192 ; any address will do Square

 LDA #$00 ; clear A

 STA Squarel ; clear square low byte

 ; (the high byte gets shifted out)

 LDA Numberl ; get number low byte

 LDX Numberh ; get number high byte

 BPL NoNneg ; if +ve don't negate it

 ; else do a two's complement

 EOR #$FF ; invert

 SEC ; +1

 ADC #$00 ; and add it NoNneg:

 STA Tempsq ; save ABS(number)

 LDX #$08 ; set bit count Nextr2bit:

 ASL Squarel ; low byte *2

 ROL Squareh ; high byte *2+carry from low

 ASL A ; shift number byte

 BCC NoSqadd ; don't do add if C = 0

 TAY ; save A

 CLC ; clear carry for add

 LDA Tempsq ; get number

 ADC Squarel ; add number^2 low byte

 STA Squarel ; save number^2 low byte

 LDA #$00 ; clear A

 ADC Squareh ; add number^2 high byte

 STA Squareh ; save number^2 high byte

 TYA ; get A back NoSqadd:

 DEX ; decrement bit count

 BNE Nextr2bit ; go do next bit

 RTS

;Square Root Calculator

;http://retro.hansotten.nl/6502-sbc/lee-davison-web-site/some-

code-bits/#prng

; by Lee Davison

; Calculates the 8 bit root and 9 bit remainder of a 16 bit

unsigned integer in

; Numberl/Numberh. The result is always in the range 0 to 255

and is held in

; Root, the remainder is in the range 0 to 511 and is held in

Reml/Remh

;

; partial results are held in templ/temph

;

; This routine is the complement to the integer square program.

;

; Destroys A, X registers.

; variables - must be in RAM

Numberl = $F0 ; number to find square root of low

byte

Numberh = Numberl+1 ; number to find square root of high

byte

Reml = $F2 ; remainder low byte

Remh = Reml+1 ; remainder high byte

templ = $F4 ; temp partial low byte

temph = templ+1 ; temp partial high byte

Root = $F6 ; square root

 *= $8000 ; can be anywhere, ROM or RAM

SqRoot

 LDA #$00 ; clear A

 STA Reml ; clear remainder low byte

 STA Remh ; clear remainder high byte

 STA Root ; clear Root

 LDX #$08 ; 8 pairs of bits to do

Loop

 ASL Root ; Root = Root * 2

 ASL Numberl ; shift highest bit of number ..

 ROL Numberh ;

 ROL Reml ; .. into remainder

 ROL Remh ;

 ASL Numberl ; shift highest bit of number ..

 ROL Numberh ;

 ROL Reml ; .. into remainder

 ROL Remh ;

 LDA Root ; copy Root ..

 STA templ ; .. to templ

 LDA #$00 ; clear byte

 STA temph ; clear temp high byte

 SEC ; +1

 ROL templ ; temp = temp * 2 + 1

 ROL temph ;

 LDA Remh ; get remainder high byte

 CMP temph ; comapre with partial high byte

 BCC Next ; skip sub if remainder high byte smaller

 BNE Subtr ; do sub if &lt;&gt; (must be

remainder&gt;partial !)

 LDA Reml ; get remainder low byte

 CMP templ ; comapre with partial low byte

 BCC Next ; skip sub if remainder low byte smaller

 ; else remainder&gt;=partial so subtract

then

 ; and add 1 to root. carry is always set here

Subtr

 LDA Reml ; get remainder low byte

 SBC templ ; subtract partial low byte

 STA Reml ; save remainder low byte

 LDA Remh ; get remainder high byte

 SBC temph ; subtract partial high byte

 STA Remh ; save remainder high byte

 INC Root ; increment Root

Next

 DEX ; decrement bit pair count

 BNE Loop ; loop if not all done

 RTS

;Unsigned Integer Division Routines

;https://forums.nesdev.org/viewtopic.php?

f=2&t=11336&fbclid=IwAR3kU9h4klLFp4_8QzsSEXVhicqvjWUWQLqFWR75Q7

rqsyQ3WWRP9UYZFOg

; Unsigned Integer Division Routines

; by Omegamatrix

;Divide by 2

;1 byte, 2 cycles

 lsr

;Divide by 3

;18 bytes, 30 cycles

 sta temp

 lsr

 adc #21

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

;Divide by 4

;2 bytes, 4 cycles

 lsr

 lsr

;Divide by 5

;18 bytes, 30 cycles

 sta temp

 lsr

 adc #13

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

;Divide by 6

;17 bytes, 30 cycles

 lsr

 sta temp

 lsr

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

;Divide by 7 (From December '84 Apple Assembly Line)

;15 bytes, 27 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

;Divide by 8

;3 bytes, 6 cycles

 lsr

 lsr

 lsr

;Divide by 9

;17 bytes, 30 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 10

;17 bytes, 30 cycles

 lsr

 sta temp

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

;Divide by 11

;20 bytes, 35 cycles

 sta temp

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 12

;17 bytes, 30 cycles

 lsr

 lsr

 sta temp

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

; Divide by 13

; 21 bytes, 37 cycles

 sta temp

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 clc

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 14

;1/14 = 1/7 * 1/2

;16 bytes, 29 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 15

;14 bytes, 24 cycles

 sta temp

 lsr

 adc #4

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 16

;4 bytes, 8 cycles

 lsr

 lsr

 lsr

 lsr

;Divide by 17

;18 bytes, 30 cycles

 sta temp

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 adc #0

 lsr

 lsr

 lsr

 lsr

;Divide by 18 = 1/9 * 1/2

;18 bytes, 32 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 19

;17 bytes, 30 cycles

 sta temp

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 20

;18 bytes, 32 cycles

 lsr

 lsr

 sta temp

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

;Divide by 21

;20 bytes, 36 cycles

 sta temp

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 22

;21 bytes, 34 cycles

 lsr

 cmp #33

 adc #0

 sta temp

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 23

;19 bytes, 34 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 24

;15 bytes, 27 cycles

 lsr

 lsr

 lsr

 sta temp

 lsr

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

;Divide by 25

;16 bytes, 29 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 26

;21 bytes, 37 cycles

 lsr

 sta temp

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 27

;15 bytes, 27 cycles

 sta temp

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 28

;14 bytes, 24 cycles

 lsr

 lsr

 sta temp

 lsr

 adc #2

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

;Divide by 29

;20 bytes, 36 cycles

 sta temp

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 30

;14 bytes, 26 cycles

 sta temp

 lsr

 lsr

 lsr

 lsr

 sec

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 31

;14 bytes, 26 cycles

 sta temp

 lsr

 lsr

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 32

 lsr

 lsr

 lsr

 lsr

 lsr

;Unsigned Integer Division Routines

;https://forums.nesdev.org/viewtopic.php?

f=2&t=11336&fbclid=IwAR3kU9h4klLFp4_8QzsSEXVhicqvjWUWQLqFWR75Q7

rqsyQ3WWRP9UYZFOg

;Divide by 6

;1/6 = 1/3 * 1/2

;19 bytes, 32 cycles

 sta temp

 lsr

 adc #21

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

;Divide by 10

;1/10 = 1/5 * 1/2

;19 bytes, 32 cycles

 sta temp

 lsr

 adc #13

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 20

;1/20 = 1/5 * 1/4

;20 bytes, 34 cycles

 sta temp

 lsr

 adc #13

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 24

;1/24 = 1/3 * 1/8

;21 bytes, 36 cycles

 sta temp

 lsr

 adc #21

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Divide by 26

;1/26 = 1/13 * 1/2

;22 bytes, 39 cycles

 sta temp

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 clc

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;Unsigned Integer Division Routines

;https://forums.nesdev.org/viewtopic.php?

f=2&t=11336&fbclid=IwAR3kU9h4klLFp4_8QzsSEXVhicqvjWUWQLqFWR75Q7

rqsyQ3WWRP9UYZFOg

;Divide by 6

;17 bytes, 30 cycles

 lsr

 sta temp

 lsr

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

;Divide by 10

;17 bytes, 30 cycles

 lsr

 sta temp

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

;Divide by 20

;18 bytes, 32 cycles

 lsr

 lsr

 sta temp

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

;Divide by 24

;15 bytes, 27 cycles

 lsr

 lsr

 lsr

 sta temp

 lsr

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

;Divide by 26

;21 bytes, 37 cycles

 lsr

 sta temp

 lsr

 adc temp

 ror

 adc temp

 ror

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Edit - Divide by 12 has also been superseded!

;Double Edit - Divide by 28 too!

;Divide by 12

;1/12 = 1/3 * 1/4

;20 bytes, 34 cycles

 sta temp

 lsr

 adc #21

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

;Divide by 28

;1/28 = 1/7 * 1/4

;17 bytes, 31 cycles

 sta temp

 lsr

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

 lsr

 lsr

;new

;Divide by 12

;17 bytes, 30 cycles

 lsr

 lsr

 sta temp

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

 adc temp

 ror

 lsr

;Divide by 28

;14 bytes, 24 cycles

 lsr

 lsr

 sta temp

 lsr

 adc #2

 lsr

 lsr

 adc temp

 ror

 lsr

 lsr

	(16 bit division), Fast divide by 10
	16-bit increment and decrement
	6502 8 bit PRNG
	6502 flag manipulation
	8-bit unsigned multiplication
	8-bit number output in 6502 machine code
	8bit x 8bit = 16bit multiply
	8x8=16 unsigned multiplication routine
	Calculating the day of the week for a given date
	Counting, incrementing, decrementing
	Decrementing 16-bit and larger numbers
	Efficient nybble-swap on 6502 by Garth Wilson
	Efficient sign extension
	Fast Multiply by 10 by Leo Nechaev
	General 8bit x 8bit = 8bit multiply
	INC and DEC techniques
	Integer Square Roots in 6502 machine code
	Jump indirect using stack
	Linear Congruential Pseudo-Random Number Generator Routines
	minimum code pseudo sine wave
	Permutation Generator by Paul Guertin
	Practical Memory Move Routines by Bruce Clark
	Reverse the byte
	Shifting and Rotating bits
	shifts
	Sign-extend
	Software - Math - Integer Division
	Square Calculator
	Square Root Calculator
	Unsigned Integer Division Routines_1
	Unsigned Integer Division Routines_2
	Unsigned Integer Division Routines_3

